精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)是定义在R上的偶函数,且f(2)=-1,对任意x∈R,有f(x)=-f(2-x)成立,则f(2016)的值为(  )
A.1B.-1C.0D.2

分析 确定f(x)是以4为周期的函数,结f(2)=-1,即可求得f(2016)的值.

解答 解:∵函数f(x)是定义在R上的偶函数,对任意x∈R,有f(x)=-f(2-x)成立,
∴f(x+4)=-f(2-x)=f(x),
∴f(x)是以4为周期的函数,
∴f(2016)=f(504×4)=f(0)=-f(2-0)=-f(2)=1,
故选:A

点评 本题考查抽象函数及其应用,考查赋值法,考查函数的周期性,求得函数的周期是解答的关键,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.△ABC的三个内角A,B,C对应的三条边长分别是a,b,c,且满足csin A+$\sqrt{3}$acos C=0.则角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数y=2ax-1(a>0,且a≠1)的图象恒过定点,若该定点在一次函数y=mx+n的图象上,其中m,n>0,则$\frac{1}{m}+\frac{1}{n}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow m=({sin(\frac{π}{2}-x),-\sqrt{3}cosx})$,$\overrightarrow n=({sinx,cosx})$,f(x)=$\overrightarrow m•\overrightarrow n$.
(1)求f(x)的最大值和对称轴;
(2)讨论f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=ax2-2x+2,a∈R
(1)已知h(10x)=f(x)+x+1,求h(x)的解析式;
(2)若f(x)>0在x∈[1,2]恒成立,求a的取值范围;
(3)设函数F(x)=|f(x)|,若对任意x1,x2∈[1,2],且x1≠x2,满足$\frac{{F({x_1})-F({x_2})}}{{{x_1}-{x_2}}}$>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.临近年终,郑州一蔬菜加工点分析市场发现:当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数,当月产量为10吨时,月总成本为20万元,当月产量为15万吨时,月总成本最低且为17.5万元.
(1)写出月总成本y(万元)关于月产量x(吨)的函数关系;
(2)已知该产品销售价位每吨1.6万元,那么月产量为多少时,可获得最大利润,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知弧度数为$\frac{π}{3}$的圆心角所对的弦长为2,则这个圆心角所对的弧长是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{{2\sqrt{3}π}}{3}$D.$\frac{{2\sqrt{3}π}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各题:
(1)${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-0.96})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{({1.5})^{-2}}$;
(2)若10x=3,10y=4,求102x-y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知$cos(α+\frac{π}{6})-sinα=\frac{{3\sqrt{3}}}{5}$,求$sin(α+\frac{5π}{6})$的值;
(2)已知$sinα+sinβ=\frac{1}{2},cosα+cosβ=\frac{{\sqrt{2}}}{2}$,求cos(α-β)的值.

查看答案和解析>>

同步练习册答案