【题目】对于双曲线,若点P(x0,y0)满足,则称P在的外部,若点P(x0,y0)满足>1,则称在的内部;
(1)若直线y=kx+1上的点都在C(1,1)的外部,求k的取值范围;
(2)若C(a,b)过点(2,1),圆x2+y2=r2(r>0)在C(a,b)内部及C(a,b)上的点构成的圆弧长等于该圆周长的一半,求b、r满足的关系式及r的取值范围;
(3)若曲线|xy|=mx2+1(m>0)上的点都在C(a,b)的外部,求m的取值范围.
【答案】(1)k>或k<﹣(2), (3)
【解析】
(1)由题意可得直线上点P(x0,y0)满足,且,即为恒成立,运用二次项系数小于0和判别式小于0,解不等式即可得到所求范围;
(2)将(2,1)代入双曲线的方程,由圆和双曲线的相交的弦长相等,弦所对的圆周角均为90°,且均为,联立圆的方程和双曲线的方程,求得交点坐标,可得弦长,化简整理可得b、r的关系式和r的范围;
(3))|xy|=mx2+1(m>0),即为,由题意可得曲线上点P(x0,y0)满足,代入,整理成的二次不等式,运用换元法和二次函数的性质,解不等式即可得到所求范围.
解:(1)直线y=kx+1上的点都在C(1,1)的外部,可得
直线上点P(x0,y0)满足,且,
即为,恒成立,
可得,且,
即有,解得或;
(2)若C(a,b)过点(2,1),可得,
即为,
由圆和双曲线的相交的弦长相等,
弦所对的圆周角均为90°,且均为,
联立,解得,
可得,
化简可得,
令,则,
即有;
(3)|xy|=mx2+1(m>0),即为,
由曲线|xy|=mx2+1(m>0)上的点都在C(a,b)的外部,
可得曲线上点P(x0,y0)满足,
即为,
即有,
令,即有,对恒成立,
时,显然成立;
时,且,
由,可得,
解得.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,平面ABCD,底面ABCD是正方形,,E为PC上一点,当F为DC的中点时,EF平行于平面PAD.
(Ⅰ)求证:平面PCB;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.设数列的前n项和为且满足
(1)求数列的通项公式;
(2)若求正整数的值;
(3)是否存在正整数,使得恰好为数列的一项?若存在,求出所有满足条件的正整数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的通项公式为,其中且.
(1)若是正项数列,求的取值范围;
(2)若,数列满足,且对任意,均有,写出所有满足条件的的值;
(3)若,数列满足,其前n项和为,且使的i和j至少4组,、、……、中至少有5个连续项的值相等,其它项的值均不相等,求,满足的充要条件并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线的方程为,过抛物线上一点作斜率为的两条直线分别交抛物线于两点(三点互不相同),且满足:
(1)求抛物线的焦点坐标和准线方程;
(2)当时,若点的坐标为,求为钝角时点的纵坐标的取值范围;
(3)设直线上一点,满足,证明线段的中点在轴上;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的首项为,公差为,等比数列的首项为,公比为,其中,且.
(1)求证:,并由推导的值;
(2)若数列共有项,前项的和为,其后的项的和为,再其后的项的和为,求的比值.
(3)若数列的前项,前项、前项的和分别为,试用含字母的式子来表示(即,且不含字母)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆与长轴是短轴两倍的椭圆:相切于点
(1)求椭圆与圆的方程;
(2)过点引两条互相垂直的两直线与两曲线分别交于点与点(均不重合).若为椭圆上任一点,记点到两直线的距离分别为,求的最大值,并求出此时的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com