精英家教网 > 高中数学 > 题目详情
当曲线y=1+
4-x2
与直线kx-y-2k+4=0有两个相异的交点时,实数k的取值范围是(  )
A.(0,
5
12
)
B.(
1
3
3
4
]
C.(
5
12
3
4
]
D.(
5
12
,+∞)
化简曲线y=1+
4-x2
,得x2+(y-1)2=4(y≥1)
∴曲线表示以C(0,1)为圆心,半径r=2的圆的上半圆.
∵直线kx-y-2k+4=0可化为y-4=k(x-2),
∴直线经过定点A(2,4)且斜率为k.
又∵半圆y=1+
4-x2
与直线kx-y-2k+4=0有两个相异的交点,
∴设直线与半圆的切线为AD,半圆的左端点为B(-2,1),
当直线的斜率k大于AD的斜率且小于或等于AB的斜率时,
直线与半圆有两个相异的交点.
由点到直线的距离公式,当直线与半圆相切时满足
|-1-2k+4|
k2+1
=2

解之得k=
5
12
,即kAD=
5
12

又∵直线AB的斜率kAB=
4-1
2+2
=
3
4
,∴直线的斜率k的范围为k∈(
5
12
3
4
]

故选:C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

过点P(2,0)引圆x2+y2-2x+6y+9=0的切线,切点为A、B,则直线AB的方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点P(2,3)向圆x2+y2=1作两条切线PA、PB,则弦AB所在直线的方程为(  )
A.2x-3y-1=0B.2x+3y-1=0C.3x+2y-1=0D.3x-2y-1=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若⊙P:(x-2)2+(y-2)2=18上恰好有三个不同的点到直线l:ax+by=0的距离为2
2
,则l的倾斜角为(  )
A.
π
12
π
6
B.
12
π
6
C.
π
12
π
4
D.
12
π
12

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P(x,y)是曲线y=
4-x2
上的动点,则点P到直线y=x+3的距离的最大值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C:x2+y2+2x-4y+3=0
(1)若圆Q的圆心在直线y=x+3上,半径为
2
,且与圆C外切,求圆Q的方程;
(2)若圆C的切线在x轴,y轴上的截距相等,求此切线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆C:x2+y2-2x+4y-4=0.
(1)写出圆C的标准方程;
(2)是否存在斜率为1的直线m,使m被圆C截得的弦为AB,且以AB为直径的圆过原点.若存在,求出直线m的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l过点P(0,2),斜率为k,圆Q:x2+y2-12x+32=0,若直线l和圆Q交于两个不同的点A,B,问是否存在常数k,使得
OA
+
OB
PQ
共线?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=kx+1被圆x2+(y-1)2=2所截得的弦AB的长等于(  )
A.2B.4C.
2
D.2
2

查看答案和解析>>

同步练习册答案