精英家教网 > 高中数学 > 题目详情

如图所示,已知曲线C1:y=x2与曲线C2:y=-x2+2ax(a>1)交于点O、A,直线x=t(0<t≤1)与曲线C1、C2分别相交于点D、B,连接OD、DA、AB.

(1)写出曲边四边形ABOD(阴影部分)的面积S与t的函数关系式S=f(t);

(2)求函数S=f(t)在区间(0,1]上的最大值.

答案:
解析:

  解:(1)由

  解得(2分)∴O(0,0),A(a,a2).

  又由已知得B(t,-t2+2at),D(t,t2),

  ∴5分

  ;6分

  (2)t2-2at+a2,令=0,即t2-2at+a2=0.解得t=(2-)a或t=(2+)a.

  ∵0<t≤1,a>1,∴t=(2+)a应舍去.即t=(2-)a;8分

  若(2-)a≥1,即a≥时,∵0<t≤1,∴≥0.

  ∴在区间上单调递增,S的最大值是=a2-a+.10分

  若(2-)a<1,即1<a<时,

  当0<t<(2-)a时,

  当(2-)a<t≤1时,

  ∴在区间(0,(2-)a]上单调递增,在区间[(2-)a,1]上单调递减.

  ∴=(2-)a是极大值点,也是最大值点

  ∴的最大值是f((2-)a)=[(2-)a]3-a[(2-)a]2+a2(2-)a=

  综上所述.12分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆C:(x+1)2+y2=8,顶点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足
AM
=2
AP
NP
AM
=0,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点A且倾斜角是45°的直线l交曲线E于两点H、Q,求|HQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆C上一动点,点P在线段AM上,点N在线段CM上,且满足
AM
=2
AP
NP
AM
=0
,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足
FG
FH
,求λ
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足
AM
=2
AP
NP
AM
=0,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点S(0,
1
3
)且斜率为k的动直线l交曲线E于A、B两点,在y轴上是否存在定点G,满足
GP
=
GA
+
GB
使四边形NAPB为矩形?若存在,求出G的坐标和四边形NAPB面积的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足AM=2AP,NP⊥AM,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线l交曲线E于不同的两点G、H(点G在点F、H之间),且满足FG=
1
2
FH
,求直线l的方程;
(3)设曲线E的左右焦点为F1,F2,过F1的直线交曲线于Q,S两点,过F2的直线交曲线于R,T两点,且QS⊥RT,垂足为W;
(ⅰ)设W(x0,y0),证明:
x
2
0
2
+
y
2
0
<1

(ⅱ)求四边形QRST的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀化二模)程序框图如图所示,已知曲线E的方程为ax2+by2=ab(a,b∈R),若该程序输出的结果为s,则(  )

查看答案和解析>>

同步练习册答案