精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCDAB⊥ADAC⊥CD∠ABC=60°PA=AB=BC

EPC的中点.求证:

CD⊥AE

PD⊥平面ABE

【答案】见解析

【解析】试题分析:()先证明CD⊥平面PAC,然后证明CD⊥AE

)要证PD⊥平面ABE,只需证明PD垂直平面ABE内的两条相交直线AEAB即可.

证明:(∵PA⊥底面ABCD∴PA⊥CD,又AC⊥CDPA∩AC=A

CD⊥平面PAC

AE平面PAC∴CD⊥AE

)由题意:AB⊥AD

∴AB⊥平面PAD,从而AB⊥PD

AB=BC,且∠ABC=60°

∴AC=AB,从而AC=PA

EPC之中点,∴AE⊥PC

由()知:AE⊥CD∴AE⊥平面PCD,从而AE⊥PD

AB∩AE=A

PD⊥平面ABE

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l1经过点A(m,1),B(-3,4),直线l2经过点C(1,m),D(-1,m+1),当l1l2l1l2时,分别求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,PO⊥平面ABC,BO⊥AC,在图中与AC垂直的直线有 (  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数y=f(x)满足f(3)=0,且当x>0时,不等式f(x)>﹣xf′(x)恒成立,则函数g(x)=xf(x)的零点的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(0,0),B(1,0),C(2,1),D(0,3),将四边形ABCDy轴旋转一周,求所得旋转体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形OBCD的顶点O与坐标原点重合,一边在x轴的正半轴上,已知∠BOD=60°,求菱形各边和两条对角线所在直线的倾斜角及斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县相邻两镇在一平面直角坐标系下的坐标为A(1,2)、B(4,0),一条河所在直线方程为lx+2y-10=0,若在河边l上建一座供水站P使之到AB两镇的管道最省,问供水站P应建在什么地方?此时|PA|+|PB|为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,设p:实数x满足x2﹣4ax+3a2<0,q:实数x满足(x﹣3)2<1.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案