【题目】在平面直角坐标系内,设M(x1 , y1)、N(x2 , y2)为不同的两点,直线l的方程为ax+by+c=0,设 .有下列四个说法:
①存在实数δ,使点N在直线l上;
②若δ=1,则过M、N两点的直线与直线l平行;
③若δ=﹣1,则直线l经过线段MN的中点;
④若δ>1,则点M、N在直线l的同侧,且直线l与线段MN的延长线相交.
上述说法中,所有正确说法的序号是 .
【答案】②③④
【解析】解:若点N在直线l上则ax2+bx2+c=0,
∴不存在实数δ,使点N在直线l上,
故①不正确;
若δ=1,则ax1+by1+c=ax2+by2+c,
即 ,
∴kMN=kl ,
即过M、N两点的直线与直线l平行,
故②正确;
若δ=﹣1,则ax1+by1+c+ax2+by2+c=0
即, ,
∴直线l经过线段MN的中点,
即③正确;
若δ>1,则ax1+by1+c>ax2+by2+c>0,
或ax1+by2+c<ax2+by2+c<0,
即点M、N在直线l的同侧,且直线l与线段MN不平行.
故④正确.
所以答案是:②③④.
【考点精析】通过灵活运用命题的真假判断与应用和一般式方程,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系;直线的一般式方程:关于的二元一次方程(A,B不同时为0)即可以解答此题.
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a﹣c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若cosA= ,a=2,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 ,g(x)=ax+5﹣2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有一次命中的概率为( )
A.0.25
B.0.2
C.0.35
D.0.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分15分)如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位打字员在两台电脑上各自输入, 两种类型的文件的部分文字才能使这两种类型的文件成为成品.已知文件需要甲输入0.5小时,乙输入0.2小时; 文件需要甲输入0.3小时,乙输入0.6小时.在一个工作日内,甲至多只能输入6小时,乙至多只能输入8小时, 文件每份利润为60元, 文件每份利润为80元,则甲、乙两位打字员在一个工作日内获得的最大利润是__________元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(0,1)、B(0,2)、C(4t,2t2﹣1)(t∈R),⊙M是以AC为直径的圆,再以M为圆心、BM为半径作圆交x轴交于D、E两点.
(Ⅰ)若△CDE的面积为14,求此时⊙M的方程;
(Ⅱ)试问:是否存在一条平行于x轴的定直线与⊙M相切?若存在,求出此直线的方程;若不存在,请说明理由;
(Ⅲ)求 的最大值,并求此时∠DBE的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com