【题目】给定椭圆C: =1(a>b>0),称圆心在原点O,半径为 的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F( ,0),其短轴上的一个端点到F的距离为 .
(Ⅰ)求椭圆C的方程和其“准圆”方程;
(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1 , l2交“准圆”于点M,N.
(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1 , l2的方程并证明l1⊥l2;
(ⅱ)求证:线段MN的长为定值.
【答案】(Ⅰ)解:∵椭圆C的一个焦点为F( ,0),其短轴上的一个端点到F的距离为 .
∴ , ,
∴ =1,
∴椭圆方程为 ,
∴准圆方程为x2+y2=4.
(Ⅱ)证明:(ⅰ)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),
设过点P(0,2)且与椭圆相切的直线为y=kx+2,
联立 得(1+3k2)x2+12kx+9=0.
∵直线y=kx+2与椭圆相切,
∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,
∴l1,l2方程为y=x+2,y=﹣x+2.
∵ ,
∴l1⊥l2.
(ⅱ)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,
则l1: ,
当l1: 时,l1与准圆交于点 ,
此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;
同理可证当l1: 时,直线l1,l2垂直.
②当l1,l2斜率存在时,设点P(x0,y0),其中 .
设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,
∴由
得 .
由△=0化简整理得 ,
∵ ,∴有 .
设l1,l2的斜率分别为t1,t2,
∵l1,l2与椭圆相切,
∴t1,t2满足上述方程 ,
∴t1t2=﹣1,即l1,l2垂直.
综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.
∴线段MN为准圆x2+y2=4的直径,|MN|=4,
∴线段MN的长为定值.
【解析】(Ⅰ)利用已知椭圆的标准方程及其 即可得出;(Ⅱ)(i)把直线方程代入椭圆方程转化为关于x的一元二次方程,利用直线与椭圆相切△=0,即可解得k的值,进而利用垂直与斜率的关系即可证明;(ii)分类讨论:l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,无论两条直线中的斜率是否存在,都有l1,l2垂直.即可得出线段MN为准圆x2+y2=4的直径.
科目:高中数学 来源: 题型:
【题目】如图,在边长为2的正三角形△ABC中,D为BC的中点,E,F分别在边CA,AB上.
(1)若 ,求CE的长;
(2)若∠EDF=60°,问:当∠CDE取何值时,△DEF的面积最小?并求出面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C1:x2+y2=r2(r>0)与直线l0:y= 相切,点A为圆C1上一动点,AN⊥x轴于点N,且动点M满足 ,设动点M的轨迹为曲线C.
(1)求动点M的轨迹曲线C的方程;
(2)若直线l与曲线C相交于不同的两点P、Q且满足以PQ为直径的圆过坐标原点O,求线段PQ长度的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣ ,若对任意的x1 , x2∈[1,2],且x1≠x2时,[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,则实数a的取值范围为( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣e2 , e2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】体积为 的正三棱锥A﹣BCD的每个顶点都在半径为R的球O的球面上,球心O在此三棱锥内部,且R:BC=2:3,点E为线段BD上一点,且DE=2EB,过点E作球O的截面,则所得截面圆面积的取值范围是( )
A.[4π,12π]
B.[8π,16π]
C.[8π,12π]
D.[12π,16π]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:参数方程与极坐标系]
已知曲线C1的参数方程为 (t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 .
(Ⅰ)求曲线C2的直角坐标系方程;
(Ⅱ)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB与圆O相切于点B,CD为圆O上两点,延长AD交圆O于点E,BF∥CD且交ED于点F
(Ⅰ)证明:△BCE∽△FDB;
(Ⅱ)若BE为圆O的直径,∠EBF=∠CBD,BF=2,求ADED.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]设在平面上取定一个极坐标系,以极轴作为直角坐标系的x轴的正半轴,以θ= 的射线作为y轴的正半轴,以极点为坐标原点,长度单位不变,建立直角坐标系,已知曲线C的直角坐标方程为x2+y2=2,直线l的参数方程 (t为参数).
(1)写出直线l的普通方程与曲线C的极坐标方程;
(2)设平面上伸缩变换的坐标表达式为 ,求C在此变换下得到曲线C'的方程,并求曲线C′内接矩形的最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com