精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在棱锥P-ABCD中,PA平面ABCD,底面ABCD为直角梯形,PA=AD=DC=2,AB=4且ABCDBAD=90°.

(1)求证:BCPC

(2)PB与平面PAC所成角的正弦值.

【答案】(1)详见解析;(2).

【解析】

试题(1)连接,取的中点,连接,所以为等腰直角三角形,故,而,所以平面,所以.以为坐标原点,分别为轴建立空间直角坐标系,利用直线的方向向量和平面的法向量,计算得线面角的正弦值为.

试题解析:

(1)在直角梯形中,

中点,连接

则四边形为正方形,

,

为等腰直角三角形,

又∵平面平面

平面

平面,所以.

(2)以为坐标原点,分别为轴建立如图所示的坐标系,

.

由(1)知即为平面的一个法向量,

与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 已知双曲线的离心率,双曲线上任意一点到其右焦点的最小距离为.

1)求双曲线的方程.

2)过点是否存在直线,使直线与双曲线交于两点,且点是线段的中点?若直线存在,请求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为,其左焦点到点的距离为,不过原点O的直线C交于A,B两点,且线段AB被直线OP平分.

1)求椭圆C的方程;

2)求k的值;

3)求面积取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,平面的中点.

(1)证明:平面

(2)设二面角,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知国家某级大型景区对拥挤等级与每日游客数量(单位:百人)的关系有如下规定:当时,拥挤等级为;当时,拥挤等级为;当时,拥挤等级为拥挤;当时,拥挤等级为严重拥挤.该景区对6月份的游客数量作出如图的统计数据:

(1)下面是根据统计数据得到的频率分布表,求出的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);

游客数量(单位:百人)

天数

10

4

1

频率

2)某人选择在61日至65日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为123,其中第2小组的频数为12

1)求该校报考飞行员的总人数;

2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为2的菱形,底面.

1)求证:平面

2)若,直线与平面所成的角为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为

)求椭圆的标准方程;

)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行“庆元旦”教工羽毛球单循环比赛(任意两个参赛队伍只比赛一场),有高一、高二、高三共三个队参赛,高一胜高二的概率为,高一胜高三的概率为,高二胜高三的概率为,每场胜负相互独立,胜者记1分,负者记0分,规定:积分相同时,高年级获胜.

(1)若高三获得冠军的概率为,求

(2)记高三的得分为,求的分布列和期望.

查看答案和解析>>

同步练习册答案