精英家教网 > 高中数学 > 题目详情

已知P(1,2)为圆x2+y2=9内一定点,过P作两条互相垂直的任意弦交圆于B、C两点,求B、C中点M的轨迹方程.

答案:
解析:

  解:设点M的坐标为(a,b),并设点B、C两点的坐标分别为(x1,y1)、(x2,y2),则由点M是B、C两点的中点,可得=a,=B.又由其是圆上的点,得到x12+y12=9,x22+y22=9,然后利用PC⊥PB,可列出=-1.

  由x12+y12=9,x22+y22=9,得到x12+y12+x22+y22=18,可得到(x1+x2)2+(y1+y2)2-2x1x2-2y1y2-18=0,解得x1x2+y1y2=2a2+2b2-9;①

  由=-1,得到x1x2+y1y2=x1+x2+2(y1+y2)-5=2a+4b-5.②

  将②和①联立得到2a2+2b2-9=2a+4b-5,化简即得到a2+b2-a-2b-2=0,所以点M的轨迹方程为x2+y2-x-2y-2=0.


提示:

设点M的坐标为(a,b),并设点B、C两点的坐标分别为(x1,y1)、(x2,y2),然后根据=a,=b及题给条件列式化简得到关于a、b的关系式即为点M的轨迹方程.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

附加题:如图,过椭圆C:
y2
a2
+
x2
b2
=1
(a>b>0)上一动点P引圆x2+y2=b2的两条切线PA,PB(A,B为切点).直线AB与x轴、y轴分别交于M、N两点.
①已知P点的坐标为(x0,y0),并且x0•y0≠0,试求直线AB的方程;    
②若椭圆的短轴长为8,并且
a2
|OM|2
+
b2
|ON|2
=
25
16
,求椭圆C的方程;
③椭圆C上是否存在P,由P向圆O所引两条切线互相垂直?若存在,求出存在的条件;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(1,2)为圆x2+y2=9内一定点,过P作两条互相垂直的任意弦交圆于点B、C,则BC中点M的轨迹方程为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(1,2)为圆x2+y2=9内一定点,过P作两条互相垂直的任意弦交圆于点B、C,则BC中点M的轨迹方程为________.

查看答案和解析>>

科目:高中数学 来源:0114 期末题 题型:解答题

已知P(x,y)为圆C:x2+y2-4x-14y+45=0上的动点,
(1)求x2+y2+4x-6y+13的最大值和最小值;
(2)求的最大值和最小值。

查看答案和解析>>

同步练习册答案