【题目】已知函数.
(1)讨论函数的单调性;
(2)若不等式在时恒成立,求实数的取值范围;
(3)当时,证明: .
【答案】(1)见解析;(2);(3)见解析
【解析】分析:(1)求出的导函数,由得增区间,由得减区间,注意在解不等式时要按的值分类讨论;
(2)由(1)的结论知当时,,题中不等式成立,而当时,题中不等式不恒成立;
(3)时,由(2)知上有,从而,令,然后所有不等式相加可证.
详解: (1)∵y=f(x)-g(x)=ln(ax+1)-,
y′=-=,
当a≥1时,y′≥0,所以函数y=f(x)-g(x)是[0,+∞)上的增函数;
当0<a<1时,由y′>0得x>2,所以函数y=f(x)-g(x)在上是单调递增函数,函数y=f(x)-g(x)在上是单调递减函数;
(2)当a≥1时,函数y=f(x)-g(x)是[0,+∞)上的增函数.
所以f(x)-g(x)≥f(0)-g(0)=1,
即不等式f(x)≥g(x)+1在x∈[0,+∞)时恒成立,
当0<a<1时,函数y=f(x)-g(x)是上的减函数,存在,使得f(x0)-g(x0)<f(0)-g(0)=1,即不等式f(x0)≥g(x0)+1不成立,
综上,实数a的取值范围是[1,+∞).
(3)当a=1时,由(2)得不等式f(x)>g(x)+1在x∈(0,+∞)时恒成立,
即ln(x+1)>,所以,
即< [ln(k+1)-lnk].
所以< (ln2-ln1),
< (ln3-ln2),
< (ln4-ln3),…,
< [ln(n+1)-lnn].
将上面各式相加得到,+++…+< [(ln2-ln1)+(ln3-ln2)+(ln4-ln3)+…+(ln(n+1)-lnn)]=ln(n+1)=f(n).
∴原不等式成立.
科目:高中数学 来源: 题型:
【题目】设函数f(x)的导函数为f′(x),若f(x)=ex﹣f(0)x+x2(e是自然对数的底数).
(1)求f(0)和f′(1)的值;
(2)若g(x)=x2+a与函数f(x)的图象在区间[﹣1,2]上恰有2两个不同的交点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校有初级教师21人,中级教师14人,高级教师7人,现采用分层抽样的方法从这些教师中抽取6人对绩效工资情况进行调查.
(1)求应从初级教师,中级教师,高级教师中分别抽取的人数;
(2)若从抽取的6名教师中随机抽取2名做进一步数据分析,求抽取的2名均为初级教师的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=1,an+1=an+n,利用如图所示的程序框图计算该数列的第10项,则判断框中应填的语句是( )
A.n>10
B.n≤10
C.n<9
D.n≤9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】产能利用率是指实际产出与生产能力的比率,工r产能利用率是衡量工业生产经营状况的重要指标.下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图.
在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.
据上述信息,下列结论中正确的是( ).
A. 2015年第三季度环比有所提高B. 2016年第一季度同比有所提高
C. 2017年第三季度同比有所提高D. 2018年第一季度环比有所提高
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知圆:,点,过点的直线与圆交于不同的两点(不在y轴上).
(1)若直线的斜率为3,求的长度;
(2)设直线的斜率分别为,求证:为定值,并求出该定值;
(3)设的中点为,是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】旅行社为去广西桂林的某旅游团包飞机去旅游,其中旅行社的包机费为10000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团的人数在20或20以下,飞机票每人收费800元;若旅游团的人数多于20,则实行优惠方案,每多1人,机票费每张减少10元,但旅游团的人数最多为75,则该旅行社可获得利润的最大值为( )
A. 12000元B. 15000元C. 12500元D. 20000元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com