11£®ÏÂÁÐÃüÌâÖУ¬ÕýÈ·µÄÓТ٢ۢÜ
¢Ù¡÷ABCÖУ¬A£¾BµÄ³ä·Ö±ØÒªÌõ¼þÊÇsinA£¾sinB£»
¢ÚÒÑÖªÏòÁ¿$\overrightarrow a=£¨¦Ë£¬2¦Ë£©£¬\overrightarrow b=£¨3¦Ë£¬2£©$£¬Èç¹û$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½ÇΪ¶Û½Ç£¬Ôò¦ËµÄÈ¡Öµ·¶Î§ÊÇ$¦Ë£¼-\frac{4}{3}$»ò¦Ë£¾0£»
¢ÛÈôº¯Êýf£¨x£©=x£¨x-c£©2ÔÚx=2´¦Óм«´óÖµ£¬Ôòc=6£»
¢ÜÔÚÈñ½Ç¡÷ABCÖУ¬BC=1£¬B=2A£¬ÔòACµÄÈ¡Öµ·¶Î§Îª$£¨\sqrt{2}£¬\sqrt{3}£©$£®

·ÖÎö ¢Ù¡÷ABCÖУ¬A£¾B?a£¾b£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{a}{sinA}=\frac{b}{sinB}$£¬ÓÚÊÇsinA£¾sinB£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÚÈç¹û$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½ÇΪ¶Û½Ç£¬Ôò$\overrightarrow{a}•\overrightarrow{b}$£¼0£¬ÇÒ²»ÄÜ·´Ïò¹²Ïߣ¬¿ÉµÃ3¦Ë2+4¦Ë£¼0£¬ÇÒ6¦Ë2-2¦Ë¡Ù0£¬½â³ö¼´¿ÉÅжϳöÕýÎó£»
¢Ûf¡ä£¨x£©=£¨x-c£©2+2x£¨x-c£©=£¨x-c£©£¨3x-c£©£¬ÓÉÓÚº¯Êýf£¨x£©=x£¨x-c£©2ÔÚx=2´¦Óм«´óÖµ£¬¿ÉµÃf¡ä£¨2£©=0£¬½âµÃc=2»ò6£¬ÔÙ½øÒ»²½Åжϳö¼´¿É£»
¢ÜÔÚÈñ½Ç¡÷ABCÖУ¬BC=1£¬B=2A£¬ÈôBÊÇ×î´ó½Ç£¬Ôò$\frac{¦Ð}{2}£¾$2A£¾C=¦Ð-3A£¬¿ÉµÃ$\frac{¦Ð}{5}£¼A£¼\frac{¦Ð}{4}$£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{1}{sinA}=\frac{AC}{sin2A}$£¬AC=2cosA£®Í¬ÀíÈôCÊÇ×î´ó½Ç£¬Ôò$\frac{¦Ð}{2}£¾¦Ð-3A£¾2A$£¾0£¬¿ÉµÃ$\frac{¦Ð}{6}£¼A£¼\frac{¦Ð}{5}$£¬¼´¿ÉÅжϳöÕæ¼Ù£®

½â´ð ½â£º¢Ù¡÷ABCÖУ¬A£¾B?a£¾b£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{a}{sinA}=\frac{b}{sinB}$£¬ÓÚÊÇsinA£¾sinB£¬ÕýÈ·£»
¢ÚÈç¹û$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½ÇΪ¶Û½Ç£¬Ôò$\overrightarrow{a}•\overrightarrow{b}$£¼0£¬ÇÒ²»ÄÜ·´Ïò¹²Ïߣ¬¡à3¦Ë2+4¦Ë£¼0£¬ÇÒ6¦Ë2-2¦Ë¡Ù0£¬½âµÃ$-\frac{4}{3}£¼¦Ë£¼0$£¬Òò´Ë²»ÕýÈ·£»
¢Ûf¡ä£¨x£©=£¨x-c£©2+2x£¨x-c£©=£¨x-c£©£¨3x-c£©£¬¡ßº¯Êýf£¨x£©=x£¨x-c£©2ÔÚx=2´¦Óм«´óÖµ£¬¡àf¡ä£¨2£©=£¨2-c£©£¨6-c£©=0£¬½âµÃc=2»ò6£¬µ±c=2ʱ£¬º¯Êýf£¨x£©ÔÚx=$\frac{2}{3}$´¦È¡µÃ¼«´óÖµ£¬ÉáÈ¥£»µ±c=6ʱ£¬º¯Êýf£¨x£©ÔÚx=2´¦È¡µÃ¼«´óÖµ£¬ÕýÈ·£®
¢ÜÔÚÈñ½Ç¡÷ABCÖУ¬BC=1£¬B=2A£¬ÈôBÊÇ×î´ó½Ç£¬Ôò$\frac{¦Ð}{2}£¾$2A£¾C=¦Ð-3A£¬¿ÉµÃ$\frac{¦Ð}{5}£¼A£¼\frac{¦Ð}{4}$£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{1}{sinA}=\frac{AC}{sin2A}$£¬AC=2cosA£¾$2sin\frac{¦Ð}{4}$=$\sqrt{2}$£®ÈôCÊÇ×î´ó½Ç£¬Ôò$\frac{¦Ð}{2}£¾¦Ð-3A£¾2A$£¾0£¬¿ÉµÃ$\frac{¦Ð}{6}£¼A£¼\frac{¦Ð}{5}$£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{1}{sinA}=\frac{AC}{sin2A}$£¬AC=2cosA$£¼2cos\frac{¦Ð}{6}$=$\sqrt{3}$£¬×ÛÉϿɵãºACµÄÈ¡Öµ·¶Î§Îª$£¨\sqrt{2}£¬\sqrt{3}£©$£®¹ÊÕýÈ·£®
×ÛÉϿɵãºÕýÈ·µÄÃüÌâΪ¢Ù¢Û¢Ü£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü£®

µãÆÀ ±¾Ì⿼²éÁ˼òÒ×Âß¼­µÄÅж¨·½·¨¡¢ÕýÏÒ¶¨ÀíµÄÓ¦Óá¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔÓ뼫ֵ¡¢ÏòÁ¿¼Ð½Ç¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑ֪˫ÇúÏßx2-$\frac{y^2}{b^2}$=1£¨b£¾0£©µÄ½¹¾àΪ4£¬Ôòb=$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÈôµãA£¨1£¬2£©µ½Å×ÎïÏßx2=2py£¨p£¾0£©×¼ÏߵľàÀëΪ4£¬Ôòp=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÍÖÔ²2x2+y2=8µÄ½¹µã×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨¡À2£¬0£©B£®£¨0£¬¡À2£©C£®£¨¡À2$\sqrt{3}$£¬0£©D£®£¨0£¬¡À2$\sqrt{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬¹ýF2µÄÖ±ÏßÓëË«ÇúÏßCµÄÓÒÖ§ÏཻÓÚP£¬QÁ½µã£¬ÈôPQ¡ÍPF1£¬ÇÒ|PF1|=|PQ|£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊe=£¨¡¡¡¡£©
A£®$\sqrt{2}$+1B£®2$\sqrt{2}$+1C£®$\sqrt{5+2\sqrt{2}}$D£®$\sqrt{5-2\sqrt{2}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªµ¥Î»ÏòÁ¿$\overrightarrow{{e}_{1}}$£¬$\overrightarrow{{e}_{2}}$Âú×ã$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=$\frac{1}{2}$£®Èô£¨5$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$£©¡Í£¨$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$£©£¨k¡ÊR£©£¬Ôòk=2£¬|$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$|=$\sqrt{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÓÃÇø¼ä±íʾÏÂÁм¯ºÏ£º
£¨1£©$\{x\left|{-\frac{1}{2}¡Üx£¼5\}}\right.$=[-$\frac{1}{2}$£¬5£©£®
£¨2£©{x|x£¼1»ò2£¼x¡Ü3}=£¨-¡Þ£¬1£©¡È£¨2£¬3]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êý$f£¨x£©=\frac{x+2a-1}{{{x^2}+1}}$ΪÆ溯Êý£¬¼°lg2=0.3010£¬lg2.015=0.3043£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©Ö¤Ã÷º¯Êýf£¨x£©ÔÚÇø¼ä[1£¬+¡Þ£©ÉÏÊǼõº¯Êý£»
£¨3£©Çó×îСµÄÕýÕûÊýn£¬Ê¹µÃf£¨1+0.01¡Á2n£©+f£¨-2016£©£¼f£¨0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®F1¡¢F2Ϊ˫ÇúÏßC£º$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$£¨a£¾0£¬b£¾0£©µÄ½¹µã£¬A¡¢B·Ö±ðΪ˫ÇúÏßµÄ×ó¡¢ÓÒ¶¥µã£¬ÒÔF1F2Ϊֱ¾¶µÄÔ²ÓëË«ÇúÏߵĽ¥½üÏßÓÚB£¬CÁ½µã£¬Èô¡÷ABCµÄÃæ»ýΪ$\frac{1}{2}$c2£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸