精英家教网 > 高中数学 > 题目详情

(本题满分15分)
已知函数
(Ⅰ)当时,试判断的单调性并给予证明;
(Ⅱ)若有两个极值点
(i) 求实数a的取值范围;
(ii)证明:。 (注:是自然对数的底数)

(1)在R上单调递减 (2),对于函数中不等式的证明,一般要功过构造函数来结合函数的最值来证明不等式的成立。

解析试题分析:解:(1)当时,在R上单调递减       …………1分
,只要证明恒成立,      …………………………2分
,则
时,
时,,当时,  ………………4分
,故恒成立
所以在R上单调递减                          ……………………6分
(2)(i)若有两个极值点,则是方程的两个根,
故方程有两个根
显然不是该方程的根,所以方程有两个根,    …………8分
,得
时,单调递减
时,
单调递减
单调递增            ……………………………10分
要使方程有两个根,需,故
的取值范围为              ……………………………………12分
法二:设,则是方程的两个根,

时,恒成立,单调递减,方程不可能有两个根
所以,由,得
时,,当时,
,得
(ii) 由,得:,故
      ………………14分
,则上单调递减

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是实数,函数
(Ⅰ)若,求的值及曲线在点处的切线方程;
(Ⅱ)求在区间上的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数(a>0,b,cÎR),曲线在点P(0,f (0))处的切线方程为
(Ⅰ)试确定b、c的值;
(Ⅱ)是否存在实数a使得过点(0,2)可作曲线的三条不同切线,若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数(其中e是自然对数的底数,k为正数)
(1)若处取得极值,且的一个零点,求k的值;
(2)若,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)若,求的最小值;
(Ⅱ)若当,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上为增函数,且,为常数,.
(1)求的值;
(2)若上为单调函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数处有极小值
(1)求函数的解析式;
(2)若函数只有一个零点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)设k∈R,函数   ,,x∈R.试讨论函数F(x)的单调性.

查看答案和解析>>

同步练习册答案