精英家教网 > 高中数学 > 题目详情
已知函数f(x)=4x+ax2-
2
3
x3(x∈R)

(1)若a=1,求函数f(x)的单调区间;
(2)若函数f(x)在区间[-1,1]上单调递增,求实数a的取值组成的集合A;
(3)设关于x的方程f(x)=2x+
1
3
x3
的两个非零实根为x1,x2,试问是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,请说明理由.
(1)f(x)=4x+x2-
2
3
x3

f'(x)=4+2x-2x2=-2(x2-x-2)=-2(x+1)(x-2),
由f'(x)>0?-1<x<2,
∴f(x)的单调增区间为(-1,2).
由f'(x)<0?x<-1,x>2,
∴f(x)的单调减区间为(-∞,-1),(2,+∞).…(4分)
(2)f'(x)=4+2ax-2x2
因f(x)在区间[-1,1]上单调递增,
所以f'(x)≥0恒成立.…(6分)
?
f′(-1)≥0
f′(1)≥0
?-1≤a≤1

A=[-1,1]…(9分).
(3)f(x)=2x+
1
3
x3?4x+ax2-
2
3
x3=2x+
1
3
x3

2x+ax2-x3=0?x(x2-ax-2)=0
x1+x2=a
x1x2=-2
?|x1-x2|=
(x1+x2)2-4x1x2
=
a2+8

∴|x1-x2|max=3,…(11分)
?只需m2+tm+1≥3对t∈[-1,1]恒成立,
令g(t)=m2+tm-2,
即g(t)=m2+tm-2≥0,对t∈[-1,1]恒成立,…(13分)
?
g(-1)≥0
g(1)≥0
?
m≤-2或m≥2
所以存在m∈(-∞,-2]∪[2,+∞)…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
4(a-3)x+a+
1
2
(x<0)
ax,(x≥0)
,若函数f(x)的图象经过点(3,
1
8
),则a=
 
;若函数f(x)满足对任意x1≠x2
f(x1)-f(x2)
x1-x2
<0
都有成立,那么实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x2
|x-3|-3
,则它是(  )
A、奇函数B、偶函数
C、既奇又偶函数D、非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

(1)求f(a2+1)(a∈R),f(f(3))的值;
(2)当-4≤x<3时,求f(x)取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4•2x+2
2x+1
+x•cosx (-1≤x≤1)
,且f(x)存在最大值M和最小值N,则M、N一定满足(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

(1)画出函数f(x)图象;
(2)求f(a2+1)(a∈R),f(f(3))的值;
(3)当-4≤x<3时,求f(x)取值的集合.

查看答案和解析>>

同步练习册答案