精英家教网 > 高中数学 > 题目详情

【题目】已双曲线的一条渐近线与椭圆C)在第一象限的交点为P为椭圆C的左、右焦点,若,则椭圆C的离心率为(

A.B.C.D.

【答案】A

【解析】

求得双曲线的渐近线方程,联立椭圆方程,求得P的坐标,设|PF1|=m|PF2|=n,运用椭圆的定义和三角形的余弦定理和面积公式可得,,结合abc的关系和离心率公式可得所求值.

设双曲线的一条渐近线方程为

代入椭圆方程可得

|PF1|=m|PF2|=n,可得m+n=2a

由余弦定理可得(2c2=m2+n2-2mncos60°

化为(m+n2-2mn-mn=4c2,即为mn=

,

,

可得,结合b2=a2-c2

化为7a4-22c2a2+3c4=0

可得a2=3c2c2=7a2(舍去),

e=,

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为正方形,.

(1)证明:面

(2)若与底面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数在点处的切线方程为,求的值;

2)若,函数在区间内有唯一零点,求的取值范围;

3)若对任意的,均有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数常数)满足.

1)求出的值,并就常数的不同取值讨论函数奇偶性;

2)若在区间上单调递减,求的最小值;

3)在(2)的条件下,当取最小值时,证明:恰有一个零点且存在递增的正整数数列,使得成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某游戏公司对今年新开发的一些游戏进行评测,为了了解玩家对游戏的体验感,研究人员随机调查了300名玩家,对他们的游戏体验感进行测评,并将所得数据统计如图所示,其中.

1)求这300名玩家测评分数的平均数;

2)由于该公司近年来生产的游戏体验感较差,公司计划聘请3位游戏专家对游戏进行初测,如果3人中有2人或3人认为游戏需要改进,则公司将回收该款游戏进行改进;若3人中仅1人认为游戏需要改进,则公司将另外聘请2位专家二测,二测时,2人中至少有1人认为游戏需要改进的话,公司则将对该款游戏进行回收改进.已知该公司每款游戏被每位专家认为需要改进的概率为,且每款游戏之间改进与否相互独立.

i)对该公司的任意一款游戏进行检测,求该款游戏需要改进的概率;

ii)每款游戏聘请专家测试的费用均为300/人,今年所有游戏的研发总费用为50万元,现对该公司今年研发的600款游戏都进行检测,假设公司的预算为110万元,判断这600款游戏所需的最高费用是否超过预算,并通过计算说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数.

1)讨论的单调区间

2)当时,存在,使得对任意均有,求实数M的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列各项均为正数,为其前项的和,且成等差数列.

1)写出的值,并猜想数列的通项公式

2)证明(1)中的猜想;

3)设为数列的前项和.若对于任意,都有,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200,设备乙每天的租赁费为300,现该公司至少要生产A类产品50,B类产品140,所需租赁费最少为__________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆柱的轴截面是边长为2的正方形,点P是圆弧上的一动点(不与重合),点Q是圆弧的中点,且点在平面的两侧.

1)证明:平面平面

2)设点P在平面上的射影为点O,点分别是的重心,当三棱锥体积最大时,回答下列问题.

i)证明:平面

ii)求三棱锥的体积.

查看答案和解析>>

同步练习册答案