精英家教网 > 高中数学 > 题目详情
数列{an}的通项公式an=
1
n
+
n+1
,则该数列的前99项之和等于
 
考点:数列的求和
专题:等差数列与等比数列
分析:由于an=
1
n
+
n+1
=
n+1
-
n
,利用“累加求和”即可得出.
解答: 解:∵an=
1
n
+
n+1
=
n+1
-
n

则该数列的前99项之和=(
2
-1)
+(
3
-
2
)
+…+(
100
-
99
)

=10-1
=9.
故答案为:9.
点评:本题考查了分母有理化、“累加求和”方法,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题:
①对立事件一定是互斥事件;
②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);
③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;
④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.
其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)解log(2x-3)(x2-3)>0
(2)若a-1≤log
1
2
x
≤a的解集是[
1
4
1
2
],则求a的值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C的半径为1,点C与点(2,0)关于点(1,0)对称,则圆C的标准方程为(  )
A、x2+y2=1
B、(x-3)2+y2=1
C、(x-1)2+y2=1
D、x2+(y-3)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的茎叶图中,甲、乙两组数据的中位数分别是
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
4-x
x-1
+log4
(x+1)的定义域是(  )
A、(0,1)∪(1,4]
B、[-1,1)∪(1,4]
C、(-1,4)
D、(-1,1)∪(1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-4x+6y+9=0,点A(-1,1).
(1)过点A作圆C的切线,求切线的长;
(2)以点A为圆心的圆与圆C外切,求圆A的方程及这两个圆公切线的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn
(1)若数列{an}是首项为1,公比为2的等比数列,求常数m,t的值,使Sn=man+t对一切大于零的自然数n都成立.
(2)若数列{an}是首项为a1,公差d≠0的等差数列,证明:存在常数m,t,b使得Sn=man2+tan+b对一切大于零的自然数n都成立,且t=
1
2

(3)若数列{an}满足Sn=man2+tan+b,n∈N+,m、t、b(m≠0)为常数,且Sn≠0,证明:当t=
1
2
时,数列{an}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号第一组第二组第三组第四组第五组
分组[50,60)[60,70)[70,80)[80,90)[90,100]
(Ⅰ)求图中a的值;
(Ⅱ)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(Ⅲ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

同步练习册答案