精英家教网 > 高中数学 > 题目详情

A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,xB,yBÎZ.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|·|△y|≠0,则称点B为点A的“相关点”,记作:B=f(A).

(1)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;

(2)已知点H(9,3),L(5,3),若点M满足M=f(H),L=f(M),求点M的坐标;

(3)已知P0(x0,y0)(x0ÎZ,y0ÎZ)为一个定点, 若点Pi满足Pi=f (Pi-1),其中i=1,2,3,···,n,求|P0Pn|的最小值.

 

【答案】

(1)x²+y²=5

(2)M(7,2)或M(7,4).

(3)当时, |P0Pn|的最小值为;

n=2k,kÎN *时, |P0Pn|的最小值为0;

n=2k+1,kÎN *时, |P0Pn|的最小值为1.

【解析】

试题分析:解: (1)因为|△x|+|△y|=3(|△x|,|△y|为非零整数),

故|△x|=1,|△y|=2或|△x|=2,|△y|=1,所以点(0,0)的“相关点”有8个 .

又因为(△x)²+(△y)²=5,即(△x-0)²+(△y-0)²="5" .

所以这些可能值对应的点在以(0,0)为圆心,为半径的圆上,

方程为x²+y²="5" .                     3分

(2)设M(xM,yM),

因为M=f(H),L=f(M),

所以有|xM-9|+|yM-3|="3," |xM-5|+|yM-3|=3,

所以|xM-9|=|xM-5|,所以xM=7, yM=2或yM=4,

所以M(7,2)或M(7,4).                6分

(3) 当n=1时,可知|P0Pn|的最小值为;

n=2k,kÎN *时, |P0Pn|的最小值为0 ;

n=3时,对于点P,按照下面的方法选择“相关点”,可得P3(x0,y0+1):

P0(x0,y0)→P1(x0+2,y0+1)→P2(x0+1,y0+3) →P3(x0,y0+1)

故|P0Pn|的最小值为1,

n=2k+3, kÎN *时,对于点P,经过2k次变换回到初始点P0(x0,y0),然后经过3次变换回到Pn(x0,y0+1),故|P0Pn|的最小值为1.

综上,当时, |P0Pn|的最小值为;

n=2k,kÎN *时, |P0Pn|的最小值为0;

n=2k+1,kÎN *时, |P0Pn|的最小值为1.         10分

考点:圆的方程,两点距离

点评:主要是考查了圆的方程的求解,以及两点距离的最值,属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区一模)设A(xA,yA),B=(xB,yB)为平面直角坐标系上的两点,其中xA,yA,xB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|•|△y|≠0,则称点B为点A的“相关点”,记作:B=τ(A).已知P0(x0,y0)(x0,y0∈Z)为平面上一个定点,平面上点列{Pi}满足:Pi=τ(Pi-1),且点Pi的坐标为(xi,yi),其中i=1,2,3,…n.
(Ⅰ)请问:点P0的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由;
(Ⅱ)求证:若P0与Pn重合,n一定为偶数;
(Ⅲ)若p0(1,0),且yn=100,记T=
ni=0
xi
,求T的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)设A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,BxB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y=3,且|△x|-|△y|≠0,则称点B为点A的“相关点”,记作:B=i(A).
(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;
(Ⅱ)已知点H(9,3),L(5,3),若点M满足M=i(H),L=i(M),求点M的坐标;
(Ⅲ)已知P0(x0,y0)(x0∈Z,Y0∈Z)为一个定点,点列{Pi}满足:Pi=i(Pi-1),其中i=1,2,3,…,n,求|P0Pn|的最小值.

查看答案和解析>>

科目:高中数学 来源:海淀区一模 题型:解答题

设A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,BxB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y=3,且|△x|-|△y|≠0,则称点B为点A的“相关点”,记作:B=i(A).
(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;
(Ⅱ)已知点H(9,3),L(5,3),若点M满足M=i(H),L=i(M),求点M的坐标;
(Ⅲ)已知P0(x0,y0)(x0∈Z,Y0∈Z)为一个定点,点列{Pi}满足:Pi=i(Pi-1),其中i=1,2,3,…,n,求|P0Pn|的最小值.

查看答案和解析>>

科目:高中数学 来源:2013年北京市海淀区高考数学一模试卷(理科)(解析版) 题型:解答题

设A(xA,yA),B=(xB,yB)为平面直角坐标系上的两点,其中xA,yA,xB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△Y|=3,且|△x|•|△y|≠0,则称点B为点A的“相关点”,记作:B=i(A).已知(x,y)(xy∈Z)为平面上一个定点,平面上点列{Pi}满足:Pi=i(Pi-1),且点Pi的坐标为(xiyi),其中i=1,2,3,…n.
(Ⅰ)请问:点p的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由;
(Ⅱ)求证:若P与Pn重合,n一定为偶数;
(Ⅲ)若p(1,0),且yn=100,记T=,求T的最大值.

查看答案和解析>>

同步练习册答案