精英家教网 > 高中数学 > 题目详情

【题目】互不相等的三个正数x1 , x2 , x3成等比数列,且点P1(logax1 , logby1)P2(logax2 , logby2),P3(logax3 , logby3)共线(a>0且a≠0,b>且b≠1)则y1 , y2 , y3成(
A.等差数列,但不等比数列
B.等比数列而非等差数列
C.等比数列,也可能成等差数列
D.既不是等比数列,又不是等差数列

【答案】C
【解析】解:∵三点共线 ∴ =
=
∵x1 , x2 , x3成等比数列,
=
=
∴y1 , y2 , y3成等比数列,
若y1 , y2 , y3相等,
y1 , y2 , y3也成等差数列
∴y1 , y2 , y3可能成等比数列,也可能成差数列
故选C
【考点精析】解答此题的关键在于理解等差关系的确定的相关知识,掌握如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即=d ,(n≥2,n∈N)那么这个数列就叫做等差数列,以及对等比关系的确定的理解,了解等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,丨φ丨< )的部分图象如图所示,则f(x)的解析式为(
A.f(x)=2sin(x+
B.f(x)=2sin(2x+
C.f(x)=2sin(2x﹣
D.f(x)=2sin(4x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(1)在等比数列{an}中,a5=162,公比q=3,前n项和Sn=242,求首项a1和项数n.
(2)有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级, 一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )

①1月至8月空气合格天数超过20天的月份有5个

②第二季度与第一季度相比,空气达标天数的比重下降了

③8月是空气质量最好的一个月

④6月份的空气质量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,与轴的正半轴交于点,右焦点 为坐标原点,且

(1)求椭圆的离心率

(2)已知点,过点任意作直线与椭圆交于两点,设直线的斜率,若,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线经过点,求的值;

(2)若内存在极值,求的取值范围;

(3)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】襄阳农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:

襄阳农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

(1)求选取的2组数据恰好是不相邻的2天数据的概率;

(2)若选取的是12月1日与12月5日这两组数据,情根据12月2日至12月4日的数据,求关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

注: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线与圆O: 且与椭圆C: 相交于A,B两点

(1)若直线恰好经过椭圆的左顶点,求弦长AB;

(2)设直线OA,OB的斜率分别为k1,k2,判断k1·k2是否为定值,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代一部重要的数学著作,书中给出了如下问题:“今有良马与驽马发长安,至齐,齐去长安一千一百二十五里.良马初日行一百零三里,日增一十三里,驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,问几何日相逢?”其大意:“现有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是.良马第一天走里,之后每天比前一天多走.驽马笫一天走里,之后每天比前一天少走.良马到齐后,立刻返回去迎驽马,多少天后两马相遇?”在这个问题中驽马从出发到相遇行走的路程为__________.

查看答案和解析>>

同步练习册答案