精英家教网 > 高中数学 > 题目详情
(2012•安庆模拟)设多面体ABCDEF,已知AB∥CD∥EF,平面ABCD⊥平面ADE,其中△ADE是以AD为斜边的等腰直角三角形,点G为BC边中点.若∠ADC=120°,AD=AB=2,CD=4,EF=3.
(1)求证:FG⊥平面ABCD;
(2)求二面角F-BD-C的大小.
分析:(1)取AD边中点H,利用面ADE⊥面ABCD,证明EH⊥面ABCD,连接GH,可证四边形EFGH为平行四边形,从而可得结论;
(2)解法一:先证明∠FBG为二面角F-BD-C的平面角,再在Rt△FGB中,可求二面角大小为30°;
解法二:建立空间坐标系,确定面BDC的法向量
n
 
1
=(0,0,1)
,面BDF的法向量
n
 
2
=(
3
,-1,2
3
)
,利用向量的夹角公式,可得结论.
解答:(1)证明:取AD边中点H,在等腰直角三角形ADE中有EH⊥AD
又面ADE⊥面ABCD,∴EH⊥面ABCD,
连接GH,由于AB∥CD∥EF,且AB=2,CD=4
∴在梯形ABCD中,HG∥AB且HG=3,∴HG∥EF且HG=EF,
∴四边形EFGH为平行四边形
∴FG∥EH且FG=EH
∴FG⊥面ABCD…(5分)
(2)解法一:在梯形ABCD中,∠ADC=120°,∴∠DAB=60°
又AB=AD=2,∴∠ADB=60°且BD=2,
∴在△BDC中,BD=2,CD=4,∠BDC=60°,∴BD⊥BC,
又由(1)知FG⊥面ABCD,而FG?面FBC,∴面FBC⊥面ABCD
∴BD⊥面FBC,∴∠FBG为二面角F-BD-C的平面角.…(10分)
而在Rt△FGB中,FG=EH=1,BG=
1
2
BC=
3
,∴∠FBG=30°,∴所求二面角大小为30°…(12分)
解法二:建立如图所示的空间坐标系,A(1,0,0),D(-1,0,0),E(0,0,1),B(0,
3
,0)
,HG=3,∠DHG=60°,∴G(-
3
2
3
3
2
,0)
F(-
3
2
3
3
2
,1)
…(7分)
∴面BDC的法向量
n
 
1
=(0,0,1)

令面BDF的法向量
n
 
2
=(x,y,z)
,则
n
 
2
DB
=0
n
 
2
DF
=0
(x,y,z)•(1,
3
,0)=0
(x,y,z)•(-
1
2
3
3
2
,1)=0

令y=-1,∴
n
 
2
=(
3
,-1,2
3
)
,…(10分)  
n1
n2
为θ,则cosθ=
n1
n2
|
n1
||
n1
|
=
(0,0,1)•(
3
,-1,2
3
)
1×4
=
3
2
,θ=30°
∴二面角大小为30°.…(12分)
点评:本题考查线面垂直,考查面面角,考查利用空间向量解决空间角问题,确定平面的法向量是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安庆模拟)若实数x,y满足不等式组
x-2≤0
y-1≤0
x+2y-a≥0
目标函数t=x-2y的最大值为2,则实数a的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆模拟)下列四种说法中,错误的个数是(  )
①A={0,1}的子集有3个;
②“若am2<bm2,则a<b”的逆命题为真;
③“命题p∨q为真”是“命题p∧q为真”的必要不充分条件;
④命题“?x∈R,均有x2-3x-2≥0”的否定是:“?x∈R,使得x2-3x-2≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆模拟)如图是一个组合几何体的三视图,则该几何体的体积是
π+
3
3
π+
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆模拟)设函数f(x)=cos
x
4
(sin
x
4
+cos
x
4
)-
1
2

(Ⅰ)求函数y=f(x)取最值时x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆模拟)集合A={x|y=x
1
2
},B={y|y=log2x,x∈R},则A∩B
等于(  )

查看答案和解析>>

同步练习册答案