精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数f(x)=ax2+bx+c.
(1)若f(﹣1)=0,f(0)=0,求出函数f(x)的零点;
(2)若f(x)同时满足下列条件:①当x=﹣1时,函数f(x)有最小值0,②f(1)=1求函数f(x)的解析式;
(3)若f(1)≠f(3),证明方程f(x)= [f(1)+f(3)]必有一个实数根属于区间(1,3)

【答案】
(1)解:∵f(﹣1)=0,f(0)=0,

∴a=b;

∴f(x)=ax(x+1);

∴函数f(x)的零点是0和﹣1


(2)解:由条件①得: ,a>0;

∴b=2a,b2=4ac,

∴4a2=4ac,

∴a=c;

由条件②知:a+b+c=1,

解得,


(3)证明:令

∴g(x)=0在(1,3)内必有一个实根,

即方程 必有一个实数根属于(1,3).


【解析】(1)由f(﹣1)=0,f(0)=0得a=b;从而化简f(x)=ax(x+1);从而确定零点;(2)由条件化简可得方程 ,从而解得;(3)令 ,从而可判断 ,从而证明

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,半径为的圆形纸板内有一个相同圆心的半径为的小圆,现将半径为的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,点,曲线 ,以极点为坐标原点,极轴为轴正半轴建立直角坐标系.

(1)在直角坐标系中,求点的直角坐标及曲线的参数方程;

(2)设点为曲线上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2 +x)﹣ cos2x,
(1)求f(x)的最小正周期及单调递减区间;
(2)当x 时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱中, ,点的中点.

(I)求证:

(II)若点上的点且满足若二面角的余弦值为求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx,cosx), =(sin(x﹣ ),sinx),函数f(x)=2 ,g(x)=f( ).
(1)求f(x)在[ ,π]上的最值,并求出相应的x的值;
(2)计算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,讨论g(x)在[t,t+2]上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设函数.

(1)当时,求的极值点;

(2)讨论在区间上的单调性;

(3)对任意恒成立时, 的最大值为1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中 )的图象与x轴的交点中,相邻两个交点之间的距离为 ,且图象上一个最低点为
(1)求f(x)的解析式;
(2)当 ,求f(x)的值域.

查看答案和解析>>

同步练习册答案