精英家教网 > 高中数学 > 题目详情
已知某几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,则此几何体的体积V=
 
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:由三视图知几何体为四棱锥,画出其直观图,根据三视图的数据求底面面积与高,代入棱锥的体积公式计算.
解答: 解:由三视图知几何体为四棱锥,其直观图如图:

四棱锥的高为4,底面为直角梯形的面积S=
1
2
(2+4)×4=12,
∴几何体的体积V=
1
3
×12×4=16.
故答案为:16.
点评:本题考查了由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及三视图的数据所对应的几何量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
x(3-x)
+
x-1
的定义域为(  )
A、[0,3]
B、[1,3]
C、[1,+∞)
D、[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线与直线l:x+
3
y=0垂直,且C的一个焦点到l的距离为2,则C的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
x-a
+
b-x
的单调递减区间是(
5
3
,6
),则y的最大值是(  )
A、
29
3
B、
33
3
C、
35
3
D、
2
39
3

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|2x+1|-|x-1|>2的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为(  )
 
A、
16
3
B、
32
3
C、16
D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,已知曲线C:ρ=2sinθ,过极点O的直线l与曲线C交于A,B两点,且AB=
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
a
b
,其中
a
=(2cosx,-
3
sin2x),
b
=(cosx,1),x∈R.
(1)求f(x)的单调递减区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=-1,a=
7
,且向量
m
=(3,sinB)与
n
=(2,sinC)共线,求边长b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两名同学参加某种选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:
 第1次第2次第3次第4次第5次
6063758087
5565777889
(1)请计算甲、乙两人成绩的平均数和方差,并据此判断选派谁参赛更好
(2)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,80分以上的个数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案