7£®ÔÚƽÃæÖ±½Ç×ø±êϵÖл­³öÏÂÁжþÔªÒ»´Î²»µÈʽ×éµÄ½âËù±íʾµÄÇøÓò£»
£¨1£©$\left\{\begin{array}{l}{x¡Ü2}\\{y£¼2x-3}\end{array}\right.$£»
£¨2£©$\left\{\begin{array}{l}{2x+y¡Ü4}\\{x¡Ý0}\\{y¡Ý0}\end{array}\right.$£»
£¨3£©$\left\{\begin{array}{l}{-1¡Üx¡Ü5}\\{-2¡Üy¡Ü3}\\{x+y¡Ü6}\end{array}\right.$£®

·ÖÎö ¸ù¾Ý¶þÔªÒ»´Î²»µÈʽ×é±íʾƽÃæÇøÓò½øÐÐ×÷ͼ¼´¿É£®

½â´ð ½â£º£¨1£©£¨2£©£¨3£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶þÔªÒ»´Î²»µÈʽ×é±íʾƽÃæÇøÓò£¬±È½Ï»ù´¡£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=¦Áx-lnx£¨¦Á¡ÊR£©£®
£¨I£©¦Á=1ʱ£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©Èôf£¨x£©µÄͼÏóºãÔÚxÖáÉÏ·½£®Çó¦ÁµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Ö¤Ã÷£º20152016£¾20162015£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=ax2+mlnx£¨m¡ÊR£©£¬ÇÒf¡ä£¨$\frac{1}{2}$£©=2m+$\frac{1}{2}$£®
£¨1£©ÈôÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß¾­¹ýµã£¨3£¬3£©£¬ÇómµÄÖµ£»
£¨2£©Éè1£¼m¡Üe£¬H£¨x£©=f£¨x£©-£¨m+1£©x£¬Ö¤Ã÷£º?x1£¬x2¡Ê[1£¬m]£¬ºãÓÐH£¨x1£©-H£¨x2£©£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬a2=2£¬ÇÒ$\frac{{a}_{n-1}-{a}_{n}}{{a}_{n-1}}$=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}}$£¨n¡Ý2£©£¬ÔòÊýÁÐ{an}µÄÇ°4ÏîºÍµÈÓÚ£¨¡¡¡¡£©
A£®18B£®8C£®15D£®17

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®º¯Êýf£¨x£©=4-$\frac{a}{{e}^{x}}$Ó뺯Êýy=2xÓÐÁ½¸ö½»µã£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª£¨0£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{7¦Ð}{6}$B£®$\frac{5¦Ð}{6}$C£®$\frac{5¦Ð}{3}$D£®$\frac{4¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Éèf£¨x£©=$\frac{{e}^{|x|}+x+1}{{e}^{|x|}+1}$ÔÚÇø¼ä[-m£¬m]£¨m£¾0£©ÉϵÄ×î´óֵΪp£¬×îСֵΪq£¬Ôòp+q=£¨¡¡¡¡£©
A£®4B£®3.5C£®3D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ½¥½üÏßÓëʵÖáµÄ¼Ð½ÇΪ30¡ã£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®$\frac{2\sqrt{3}}{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÇóÏÂÁи÷ʽµÄÖµ£®
£¨¢ñ£©Éè${x}^{\frac{1}{2}}+{x}^{{-}^{\frac{1}{2}}}=3$£¬Çóx+x-1£»
£¨¢ò£©£¨lg2£©2+lg5•lg20+£¨$\root{3}{2}¡Á\sqrt{3}£©^{6}+£¨2\frac{1}{4}£©^{\frac{1}{2}}-0£®{3}^{0}-1{6}^{-\frac{3}{4}}$6+$£¨2\frac{1}{4}£©^{\frac{1}{2}}$-0.30-$1{6}^{{-}^{\frac{3}{4}}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸