精英家教网 > 高中数学 > 题目详情

设e1、e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足·=0,则的值是

[  ]
A.

1

B.

C.

2

D.

不确定

答案:C
解析:

设椭圆方程为=1(a>b>0),双曲线方程为=1(m>0,n>0),则|PF1|+|PF2|=2a,|PF1|-|PF2|=2m,|PF1|=a+m,|PF2|=a-m,,则(a-m)2+(a-m)2=2(a2+m2)=4c2=2.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足
PF1
PF2
=0
,则
e
2
1
+
e
2
2
(e1e2)2
的值为(  )
A、
1
2
B、1
C、2
D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

设e1.e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足
.
PF1
.
PF2
=0,则
1
e
2
1
+
1
e
2
2
的值为(  )
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春一模)设e1、e2分别为具有公共焦点F1、F2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足|
F1
+
PF2
|=|
F1F2
|,则
e1e2
e
2
1
+
e
2
2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•盐城一模)设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足
PF1
PF2
=0,则
e
2
1
+
e
2
2
(e1e2)2
的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•聊城一模)设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足
PF1
PF2
=0,则4e12+e22的最小值为(  )

查看答案和解析>>

同步练习册答案