精英家教网 > 高中数学 > 题目详情
设双曲线M:
x2
a2
-
y2
b2
=1(a>0,b>0)的半焦距为c,且双曲线M与圆x2+y2=c2相交于A,B,C,D四点,若以A,B,C,D为顶点的四边形为正方形,则双曲线M的离心率等于(  )
A、2+
2
B、
2+
2
C、
2
+1
D、
2
+1
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:由双曲线方程和圆的方程联立,求出交点,再由正方形的概念可得有AB=AD,即AB2=AD2,再由离心率公式,计算即可得到.
解答: 解:由双曲线的方程和圆x2+y2=c2联立,
可得x2=
c4-b4
c2
=
a2(2c2-a2)
c2
,y2=
b4
c2
=
(c2-a2)2
c2

由于以A(x,y),B(-x,y),C(-x,-y),D(x,-y)
为顶点的四边形为正方形ABCD,
则有AB=AD,即为AB2=AD2
即有4x2=4y2
即为a2(2c2-a2)=(c2-a22
化简即有c4-4a2c2+2a4=0,
e4-4e2+2=0,
e2=2±
2

由于e>1,则e=
2+
2

故选B.
点评:本题考查双曲线方程和圆方程联立求交点的方法,考查离心率的求法,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式x2+x-6<0的解集为A,不等式
x-2
x+1
≤0
的解集是B,求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人从4门课程中各选修两门,则甲乙所选的课程中至少有1门不相同的选法共有(  )种.
A、30B、36C、60D、72

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线为y=
3
x,则双曲线的离心率为(  )
A、
3
B、2
C、
5
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB,垂足为F.
(1)求证PA∥平面EBD;
(2)求二面角P-AD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在植物活动前为保证树苗的质量,林管部门会对树苗进行检测.先从甲、乙两种树苗中各抽测了10株树苗的高度,量出的高度(单位:厘米)制作成茎叶图如下,甲,乙两种树苗的平均高度分别记为
x
y
,方差分别记为Sx2,Sy2,则下列结论正确的是(  )
A、
x
y
且Sx2<Sy2
B、
x
y
且Sx2>Sy2
C、
x
y
且Sx2<Sy2
D、
x
y
且Sx2<Sy2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(π+α)=
3
5
,α为第三象限角,则tanα=(  )
A、
3
4
B、-
3
4
C、
4
3
D、-
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={y∈N|y=x2-4x+6},B={y∈N|y=-x2-2x+5},求A∩B,并用例举法和描述法两种方法表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对于任意的x,y∈R满足f(x+y)=f(x)+f(y),且当x>0时,f(x)<0.
(1)证明:f(x)是奇凼数;
(2)判断 f(x)在R上的单调性,并证明你的结论.

查看答案和解析>>

同步练习册答案