精英家教网 > 高中数学 > 题目详情

【题目】已知函数的最小值为

⑴设,求证: 上单调递增;

⑵求证:

⑶求函数的最小值.

【答案】见解析见解析见解析

【解析】试题分析:(1先求导求出,再求导,利用导数的符号变换得到函数的单调区间;(2由⑴可知上单调递增,再利用零点存在定理及函数的单调性进行求解;(3)分离参数,合理构造,利用导数研究函数的最值.

试题解析:

上单调递增

⑵由⑴可知上单调递增

存在唯一的零点,设为,则

时, ;当时,

从而上单调递增,在上单调递减

所以的最小值

(当且仅当时取等号)

(第二问也可证明,从而得到

同⑴方法可证得上单调递增

存在唯一的零点,设为,则

所以的最小值为

,即

由⑵可知

=

上单调递增

所以的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知不等式 >x的解集为(﹣∞,m).
(Ⅰ)求实数m的值;
(Ⅱ)若关于x的方程|x﹣n|+|x+ |=m(n>0)有解,求实数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线恒过定点.

若直线经过点且与直线垂直,求直线的方程;

若直线经过点且坐标原点到直线的距离等于3,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A,B,锐角α的终边与单位圆O交于点P.

(1)α的三角函数表示点P的坐标;

(2)=-,α的值;

(3)x轴上是否存在定点M,使得||=|恒成立?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限和所支出的维修费用 (万元),有如下的统计数据由资料知呈线性相关,并且统计的五组数据得平均值分别为,,若用五组数据得到的线性回归方程去估计,使用8年的维修费用比使用7年的维修费用多1.1万元,

(1)求回归直线方程;

(2)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左顶点为,过原点且斜率不为0的直线与椭圆交于两点,其中点在第二象限,过点轴的垂线交于点

⑴求椭圆的标准方程;

⑵当直线的斜率为时,求的面积;

⑶试比较大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,侧棱底面的中点,求证:

(1)平面

(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】
(1)求 的值;
(2)设mn N* , nm , 求证:
.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的最小值为1f(0)f(2)3.

(1)f(x)的解析式

(2)f(x)在区间[2aa1]上不单调求实数a的取值范围

(3)在区间[1,1]yf(x)的图象恒在y2x2m1的图象上方试确定实数m的范围

查看答案和解析>>

同步练习册答案