精英家教网 > 高中数学 > 题目详情
已知
(1)求f(x)的最小正周期;
(2)求f(x)的单调减区间;
(3)若函数g(x)=f(x)-m在区间上没有零点,求m的取值范围.
【答案】分析:(1)函数解析式利用两角和与差的正弦函数公式及特殊角的三角函数值化简,整理后利用两角和与差得正弦函数公式化为一个角的正弦函数,找出ω的值即可求出函数的最小正周期;
(2)根据正弦函数的单调减区间为[+2kπ,+2kπ],k∈Z,求出x的范围即可;
(3)作出函数y=f(x)在[-]上的图象,函数g(x)无零点,即方程f(x)-m=0无解,亦即:函数y=f(x)与y=m在x∈[-]上无交点从图象可看出f(x)在[-]上的值域为[0,+1],利用图象即可求出m的范围.
解答:解:(1)f(x)=sin2x+cos2x+sin2x-cos2x=sin2x+cos2x+1=sin(2x+)+1,
∵ω=2,∴T=π;
(2)由+2kπ≤2x++2kπ,k∈Z得:+kπ≤x≤+kπ,k∈Z,
∴f(x)的单调减区间为[kπ+,kπ+],k∈Z;
(3)作出函数y=f(x)在[-]上的图象如下:

函数g(x)无零点,即方程f(x)-m=0无解,
亦即:函数y=f(x)与y=m在x∈[-]上无交点从图象可看出f(x)在[-]上的值域为[0,+1],
则m>+1或m<0.
点评:此题考查了两角和与差的正弦函数公式,正弦函数的单调性,以及正弦函数的图象与性质,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数学公式
(1)求f(x);
(2)判断f(x)的奇偶性和单调性;
(3)若当x∈(-1,1)时,有f(1-m)+f(1-m2)<0,求m的集合M.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省牡丹江一中高一(上)期末数学试卷(解析版) 题型:解答题

已知
(1)求f(x)在[0,2π]上的单调区间
(2)当x时,f(x)的最小值为2,求f(x)≥2成立的x的取值集合.
(3)若存在实数a,b,C,使得a[f(x)-m]+b[f(x-C)-m]=1,对任意x∈R恒成立,求的值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省扬州中学高三(上)开学考试数学试卷(解析版) 题型:解答题

已知
(1)求f(x)的解析式;
(2)若0≤θ≤π,求θ,使f(x)为偶函数;
(3)在(2)的条件下,求满足f(x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

科目:高中数学 来源:2013年山东省高考数学预测试卷(06)(解析版) 题型:解答题

已知
(1)求f(x);
(2)判断f(x)的奇偶性和单调性;
(3)若当x∈(-1,1)时,有f(1-m)+f(1-m2)<0,求m的集合M.

查看答案和解析>>

同步练习册答案