精英家教网 > 高中数学 > 题目详情
求下列函数的值域:
(Ⅰ)y=(
1
2
)2x-x2

(Ⅱ)y=
3x-1
3x+1
分析:(I)令t=2x-x2,由二次函数的性质可求t的范围,然后结合指数函数的性质即可求解
(II)由指数函数的性质可知,3x+1>1,而y=
3x-1
3x+1
=1-
2
3x+1
,可求函数的值域
解答:解:(I)令t=2x-x2=-(x-1)2+1≤1
(
1
2
)
2x-x2
1
2

函数的值域为[
1
2
,+∞

(II)∵3x+1>1
0<
2
3x+1
<2

y=
3x-1
3x+1
=1-
2
3x+1
∈(-1,1)
函数的值域为(-1,1)
点评:本题主要考查了二次函数、指数函数的性质在函数值域求解中的应用,分离常量是求解函数的值域中的重要方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列函数的值域
(1)y=
3sinx+1
3sinx+2

(2)y=
1-tan2(
π
4
-x)
1+tan2(
π
4
-x)

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域
(1)y=loga(-2sin2x+5sinx-2);
(2)y=sin(x-
π6
)cosx

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域:
(1)y=
x2
x2+1
;                  
 (2)y=2x+
x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

例1.求下列函数的值域
(1)y=
1+sinx
2+cosx
(2)y=
ex-e-x
ex+e-x
(3)y=sinx+cosx+sinxcosx
(4)y=x+
1
x
(2≤x≤5)
(5)y=
x+1
x+2

查看答案和解析>>

同步练习册答案