精英家教网 > 高中数学 > 题目详情
11.已知$cos({α+\frac{π}{6}})=\frac{1}{3}$,$α∈[{0,\frac{π}{2}}]$,那么cosα等于(  )
A.$\frac{2\sqrt{2}-\sqrt{3}}{6}$B.$\frac{2\sqrt{2}+\sqrt{3}}{6}$C.$\frac{2\sqrt{3}-\sqrt{2}}{6}$D.$\frac{2\sqrt{3}+\sqrt{2}}{6}$

分析 利用同角三角函数的基本关系式以及两角和与差的余弦函数化简求解即可.

解答 解:$cos({α+\frac{π}{6}})=\frac{1}{3}$,$α∈[{0,\frac{π}{2}}]$,
可得$sin(α+\frac{π}{6})=\sqrt{1-(\frac{1}{3})^{2}}$=$\frac{2\sqrt{2}}{3}$.
cosα=cos(α+$\frac{π}{6}$-$\frac{π}{6}$)=$cos(α+\frac{π}{6})cos\frac{π}{6}$+$sin(α+\frac{π}{6})sin\frac{π}{6}$=$\frac{1}{3}×\frac{\sqrt{3}}{2}+\frac{2\sqrt{2}}{3}×\frac{1}{2}$=$\frac{2\sqrt{2}+\sqrt{3}}{6}$.
故选:B

点评 本题考查两角和与差的三角函数,同角三角函数的基本关系式的应用,考查转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知⊙O是边长为2的正方形ABCD的内切圆,P是⊙O上任意一点,则AP+$\sqrt{2}$BP的最小值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+φ),(x∈R,A>0,φ>0)的图象与x轴的交点中,相邻两个交点之间的距离为$\frac{π}{2}$,且图象上一点为M($\frac{2}{3}π$,-2).
(1)求f(x)的函数解析式;
(2)若x∈[0,$\frac{π}{4}$],求f(x)的最值及相应的值;
(3)将函数f(x)的图象向左平移$\frac{π}{2}$个单位,再将图象上各点的横坐标变为原来的2倍,纵坐标不变,求经以上变换后得到的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果一个点是一个指数函数的图象与一个对数函数的图象的公共点,那么称这个点为“好点”,在下面的六个点M(1,1)、N(1,2)、P(1,3)、Q(2,1)、R(2,2)、T(2,3)中,“好点”的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合 A={1,2,4},B={a,3,5},若 A∩B={4},则 A∪B=(  )
A.{4}B.{1,2,4,5}C.{1,2,3,4,5}D.{a,1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知球O的体积为36π,则球的内接正方体的棱长是$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2sinx+$\frac{3\sqrt{3}}{π}$x+m,x∈[-$\frac{π}{3}$,$\frac{π}{3}$]有零点,则m的取值范围是(  )
A.[2$\sqrt{3}$,+∞)B.(-∞,2$\sqrt{3}$]C.(-∞,2$\sqrt{3}$]∪(2$\sqrt{3}$,+∞)D.[-2$\sqrt{3}$,2$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,在区间(0,+∞)上为减函数的是(  )
A.y=x+1B.y=$\sqrt{x+1}$C.y=($\frac{1}{2}$)xD.y=-$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知(x,y)满足不等式组$\left\{\begin{array}{l}x+y-2≥0\\ x-y≥0\\ 2x-y-4≤0\end{array}\right.$则$\frac{y}{x+1}$的取值范围是$[0,\frac{4}{5}]$.

查看答案和解析>>

同步练习册答案