精英家教网 > 高中数学 > 题目详情

【题目】设△ABC的内角A,B,C 的对边分别是a,b,c,已知 b+acos C=0,sin A=2sin(A+C).
(1)求角C的大小;
(2)求 的值.

【答案】
(1)解:sin A=2sin(A+C)=2sin(π﹣B)=2sinB,

由正弦定理可知: = = =2R,

∴a=2b,

由cosC=﹣ =﹣

由0<C<π,则C=


(2)解:由余弦定理可知:c2=a2+b2﹣2abcosC=4b2+b2+2b2=8b2,则c=2 b,

= =

的值为


【解析】(1)由题意可知sin A=2sinB,根据正弦定理可知a=2b,则cosC=﹣ =﹣ ,即可求得C;(2)利用余弦定理求得c=2 b,即可求得 的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知
(1)求sin(α+β)的值;
(2)求cos(α﹣β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 的夹角为60°且| |=| |=1,如果
(1)证明:A、B、D三点共线.
(2)试确定实数k的值,使k的取值满足向量 与向量 垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若(a+b+c)(b+c﹣a)=3ab,且sinA=2sinBcosC,那么△ABC是(
A.直角三角形
B.等边三角形
C.等腰三角形
D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校伙食长期以面粉和大米为主食,面食每100 g含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100 g含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC 中,角A,B,C所对的边分別为a,b,c,且asin Acos C+csin AcosA= c
(1)若c=1,sin C= ,求△ABC的面积S
(2)若D 是AC的中点且cosB= ,BD= ,求△ABC的最短边的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AB∥CD,∠BAD=90°,AD= ,DC=2AB=2,E为BC中点.

(1)求证:平面PBC⊥平面PDE
(2)线段PC上是否存在一点F,使PA∥平面BDF?若存在,求 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元). (Ⅰ)将y表示为x的函数:
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

同步练习册答案