精英家教网 > 高中数学 > 题目详情
如图所示,已知椭圆的两个焦点分别为,且到直线的距离等于椭圆的短轴长.

(Ⅰ) 求椭圆的方程;
(Ⅱ) 若圆的圆心为(),且经过,是椭圆上的动点且在圆外,过作圆的切线,切点为,当的最大值为时,求的值.
(Ⅰ) ;(Ⅱ).

试题分析:(Ⅰ)求椭圆的标准方程,“先定位后定量”,由题知焦点在轴,且,由点到直线的距离求,再由,进而写出椭圆的标准方程;(Ⅱ)圆的圆心为,半径为,连接,则,设点,在中,利用勾股定理并结合,表示,其中,转化为自变量为的二次函数的最值问题处理.
试题解析:(Ⅰ)设椭圆的方程为(),依题意,,所以 ,又,所以,所以椭圆的方程为.
(Ⅱ) 设(其中), 圆的方程为,因为,
所以,当时,当时,取得最大值,且,解得(舍去).
时,当时,取最大值,且,解得,又,所以.
综上,当时,的最大值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设点分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为.
(I)求椭圆的方程;
(II)设直线(直线不重合),若均与椭圆相切,试探究在轴上是否存在定点,使点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:,定点M(0,5),直线轴交于点F,O为原点,若以OM为直径的圆恰好过与抛物线C的交点.
(1)求抛物线C的方程;
(2)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于,求证: 抛物线C分别过两点的切线的交点Q在一条定直线上运动.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知线段MN的两个端点M、N分别在轴、轴上滑动,且,点P在线段MN上,满足,记点P的轨迹为曲线W.
(1)求曲线W的方程,并讨论W的形状与的值的关系;
(2)当时,设A、B是曲线W与轴、轴的正半轴的交点,过原点的直线与曲线W交于C、D两点,其中C在第一象限,求四边形ACBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆两焦点坐标分别为,,一个顶点为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为的直线,使直线与椭圆交于不同的两点,满足. 若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知抛物线,设点为抛物线上的动点(异于顶点),连结并延长交抛物线于点,连结并分别延长交抛物线于点,连结,设的斜率存在且分别为.

(1)若,求
(2)是否存在与无关的常数,是的恒成立,若存在,请将表示出来;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知坐标平面内.动点P与外切与内切.
(1)求动圆心P的轨迹的方程;
(2)若过D点的斜率为2的直线与曲线交于两点A、B,求AB的长;
(3)过D的动直线与曲线交于A、B两点,线段中点为M,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的方程为,双曲线的两条渐近线为.过椭圆的右焦点作直线,使,又交于点,设与椭圆的两个交点由上至下依次为.

(1)若的夹角为,且双曲线的焦距为,求椭圆的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若一个动点到两个定点的距离之差的绝对值等于8,则动点M的轨迹方程为 (    )
A.B.
C.D.

查看答案和解析>>

同步练习册答案