精英家教网 > 高中数学 > 题目详情

【题目】如图所示的几何体是由棱台 和棱锥拼接而成的组合体,其底面四边形是边长为 的菱形,且 平面

1)求证:平面 平面

2)求二面角的余弦值.

【答案】1)证明见解析;(2

【解析】试题分析:

1)要证明平面平面,由面面垂直的判定定理知,需在某个平面上找到某条直线垂直于另一个平面,通过观察分析,平面内直线平面.要证明平面,又转化为线面垂直问题, ⊥平面,菱形中, ,又平面 .

2建立空间直角坐标系,分别求出平面平面DFC的法向量,再求出两个法向量的夹角的余弦值,即可得二面角的余弦值.

试题解析:

1⊥平面

在菱形中,

平面

平面∴平面⊥平面

2)连接交于点,以为坐标原点,以轴,以 轴,如图建立空间直角坐标系.

,同理

,,

设平面的法向量

,则

设平面DFC的法向量

,则

设二面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.

(1)当CF=1时,求证:EF⊥A1C;
(2)设二面角C﹣AF﹣E的大小为θ,求tanθ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在实数集R中定义一种运算“⊙”,具有性质:①对任意a、b∈R,a⊙b=b⊙a;②a⊙0=a;③对任意a、b∈R,(a⊙b)⊙c=(ab)⊙c+(a⊙c)+(b⊙c)﹣2c,则函数f(x)=x⊙ 的最小值是(
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=PA=4,A点在PD上的射影为G点,E点在AB上,平面PCE⊥平面PCD.
(1)求证:AG⊥平面PCD;
(2)求直线PD与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是 . (填写所有正确的序号) ①若sinx+siny= ,则siny﹣cos2x的最大值为
②函数y=sin(2x+ )的单调增区间是[kπ﹣ ,kπ+ ],k∈Z;
③函数f(x)= 是奇函数;
④函数y=tan 的最小正周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax﹣lnx,x∈(0,e],其中e是自然常数,a∈R.
(1)当a=1时,求f(x)的单调区间和极值;
(2)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
(3)证明:(1﹣ )( )( )…( )<e33n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx.
(1)当x∈[0, ]时,求f(x)的值域;
(2)用五点法在图中作出y=f(x)在闭区间[﹣ ]上的简图;
(3)说明f(x)的图象可由y=sinx的图象经过怎样的变化得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某正弦交流电的电压v(单位V)随时间t(单位:s)变化的函数关系是v=120 sin(100πt﹣ ),t∈[0,+∞).
(1)求该正弦交流电电压v的周期、频率、振幅;
(2)若加在霓虹灯管两端电压大于84V时灯管才发光,求在半个周期内霓虹灯管点亮的时间?( 取 ≈1.4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,两圆内切于点T,大圆的弦AB切小圆于点C.TATB与小圆分别相交于点EF.FE的延长线交两圆的公切线TP于点P.

求证:(1)

(2)AC·PFBC·PT.

查看答案和解析>>

同步练习册答案