精英家教网 > 高中数学 > 题目详情
11.在△ABC中,角A、B、C所对的边分别是a、b、c,M是BC的中点,BM=2,AM=c-b,△ABC面积的最大值为2$\sqrt{3}$.

分析 在△ABM和△ABC中分别使用余弦定理得出bc的关系,求出cosA,sinA,代入面积公式求出最大值.

解答 解:在△ABM中,由余弦定理得:
cosB=$\frac{A{B}^{2}+B{M}^{2}-A{M}^{2}}{2AB•BM}$=$\frac{{c}^{2}+4-(c-b)^{2}}{4c}$.
在△ABC中,由余弦定理得:
cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{{c}^{2}+16-{b}^{2}}{8c}$.
∴$\frac{{c}^{2}+4-(c-b)^{2}}{4c}$=$\frac{{c}^{2}+16-{b}^{2}}{8c}$.
即b2+c2=4bc-8.
∵cosA=$\frac{{b}^{2}+{c}^{2}-16}{2bc}$=$\frac{2bc-12}{bc}$,∴sinA=$\sqrt{1-co{s}^{2}A}$=$\sqrt{1-(\frac{2bc-12}{bc})^{2}}$.
∴S=$\frac{1}{2}bc$sinA=$\frac{1}{2}$bc$\sqrt{1-(\frac{2bc-12}{bc})^{2}}$=$\frac{1}{2}$$\sqrt{-3(bc-8)^{2}+48}$.
∴当bc=8时,S取得最大值2$\sqrt{3}$.
故答案为2$\sqrt{3}$.

点评 本题考查了余弦定理得应用,根据余弦定理得出bc的关系是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设p:实数x满足x2-4ax+3a2<0,a<0.q:实数x满足x2-x-6≤0.且?p是?q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若向量$\overrightarrow a$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“y=sin(2x+φ)关于y轴对称”的(  )条件是“$φ=\frac{π}{2}$”(  )
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.α、β均为锐角,sin2α+sinβcosβ=1,则$\sqrt{1+sin2β}$+$\sqrt{1-cos2α}$的最大值为$\sqrt{3+\sqrt{10}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算:
(1)log23•log34+lg4+2lg5+3${\;}^{\frac{1}{2}}$$•\sqrt{27}$-0.1-1-eln3(e=2.71828…是自然对数的底数);
(2)2cos240°+(sin10°-sin80°)2+2cos210°tan10°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,P是双曲线在第一象限上的点,直线PO,PF2分别交双曲线C左、右支于另一点M,N,|PF1|=2|PF2|,且∠MF2N=60°,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{7}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l的方程:2x+y-7=0,则l的斜率是(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将一张坐标纸折叠一次,使得点(0,2)与(-2,0)重合,且点(2009,2010)与点(m,n)重合,则n-m=1.

查看答案和解析>>

同步练习册答案