(12分)设等比数列
的前
项和为
,已知
N
).
(1)求数列
的通项公式;(6分)
(2)在
与
之间插入n个数,使这n+2个数组成公差为
的等差数列,求数列
的前
项和
.(6分)
(1)
;(2)
。
(1)由
Z
*),得
Z
*,
),
再两式相减得:
,从而可得
,又因为
是等比数列,所以
,从而求出首项a
1,得到
的通项公式.
(2) 由(1)知
,则
,又∵
,从而可得
,所以
,所以采用错位相减的方法求和即可.
(1)由
Z
*)
得
Z
*,
),………………………………2分
两式相减得:
,
即
Z
*,
),………………………………4分
∵
是等比数列,所以
; 又
则
,∴
,
∴
…………………………6分
(2)由(1)知
,则
∵
,
∴
…………………8分
∵
…
①
②…………………10分
①-②得
……………………………………11分
∴
……………………………………12分
练习册系列答案
相关习题
科目:高中数学
来源:不详
题型:解答题
已知等比数列
的前
项和为
,且
是
与2的等差中项,等差数列
中,
,点
在直线
上.
⑴求
和
的值;
⑵求数列
的通项
和
;
⑶ 设
,求数列
的前n项和
.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知数列
的前n项和为
,且
.
(1) 求数列
的通项公式;
(2) 令
,求数列
的前
项和
.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知
为等差数列,且
(1)求数列
的通项公式;
(2)
的前
项和为
,若
成等比数列,求正整数
的值。
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知等差数列
满足:
.
(1)求
的通项公式;
(2)若
,求数列
的前n项和
.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知数列
中各项均为正数,
是数列
的前
项和,且
.
(1)求数列
的通项公式
(2)对
,试比较
与
的大小.
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
在等差数列
中,
则公差d= ( )
查看答案和解析>>