精英家教网 > 高中数学 > 题目详情

(本小题满分12分). 若直线l与抛物线交于A、B两点,O点是坐标原点。

(1)当m=-1,c=-2时,求证:OA⊥OB;

 (2)若OA⊥OB,求证:直线l恒过定点;并求出这个定点坐标。

(3)当OA⊥OB时,试问△OAB的外接圆与抛物线的准线位置关系如何?证明你的结论。

 

 

【答案】

设A(x1,y1)、B(x2,y2),由

可知y1+y2=-2m  y1y2=2c   ∴x1+x2=2m2—2c  x1x2= c2,

(1)    当m=-1,c=-2时,x1x2 +y1y2=0 所以OA⊥OB.

(2)    当OA⊥OB时,x1x2 +y1y2=0 于是c2+2c=0 ∴c=-2(c=0不合题意),此时,直线l过定点(2,0).

(3)    由题意AB的中点D(就是△OAB外接圆圆心)到原点的距离就是外接圆的半径。

而(m2—c+)2-[(m2—c)2+m2 ]=  由(2)知c=-2 

∴圆心到准线的距离大于半径,故△OAB的外接圆与抛物线的准线相离。

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案