精英家教网 > 高中数学 > 题目详情

【题目】已知函数及函数(a,b,c∈R),若a>b>ca+b+c=0.

(1)证明:f(x)的图像与g(x)的图像一定有两个交点;

(2)请用反证法证明:

【答案】(1)见解析;(2)见解析

【解析】

(1)根据判别式大于零论证结果,(2)先假设,再根据假设推出矛盾,否定假设即得结果.

(1)证明由

,∴

∴①有两个不相等的实数根,即两函数图像一定由两个交点,

(2)证明:若结论不成立,则≤-2≥-

(I)由≤-2,结合(1)a>0,得c≤-2a,即a+c≤-a,∴-b≤-a

∴a≤b 这与条件中a>b矛盾

(II)再由≥-,得2c≥-a,即c≥-(a+c)=b

∴b≤c 这与条件中b>c矛盾

故假设不成立,原不等式成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1)当0≤x≤200时,求函数vx)的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx=xvx)可以达到最大,并求出最大值.(精确到1/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣a(x﹣1),a∈R
(1)讨论函数f(x)的单调性;
(2)当x≥1时,f(x)≤ 恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列三个等式:f(x+y)=f(x)f(y),f(xy)=f(x)+f(y),f(ax+by)=af(x)+bf(y)(a+b=1).下列选项中,不满足其中任何一个等式的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2分别是双曲线 =1(a>0,b>0)的左右焦点,若在双曲线的右支上存在一点M,使得( + =0(其中O为坐标原点),且| |= | |,则双曲线离心率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD—A1B1C1D1中,ADAA11AB2,点E在棱AB上.

)求异面直线D1EA1D所成的角;

)若平面D1EC与平面ECD的夹角大小为45°,求点B到平面D1EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为调查高二学生上学路程所需要的时间(单位:分钟),从高二年级学生中随机抽取名按上学所需要时间分组:第,第,第,第,第,得到的频率分布直方图如图所示.

)根据图中数据求的值.

)若从第 组中用分层抽样的方法抽取名新生参与交通安全问卷调查,应从第 组各抽取多少名新生?

)在()的条件下,该校决定从这名学生中随机抽取名新生参加交通安全宣传活动,求第组至少有一志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km)

(1)t4时,求s的值;

(2)st变化的规律用数学关系式表示出来;

(3)N城位于M地正南方向,且距M650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,已知直线l:x+y+a=0与点A(0,2),若直线l上存在点M满足|MA|2+|MO|2=10(O为坐标原点),则实数a的取值范围是(
A.(﹣ ﹣1, ﹣1)
B.[﹣ ﹣1, ﹣1]
C.(﹣2 ﹣1,2 ﹣1)
D.[﹣2 ﹣1,2 ﹣1]

查看答案和解析>>

同步练习册答案