精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x2+x-ln(1+x)
(I)讨论函数f(x)的单调性;
(Ⅱ)若关于x的方程f(x)=$\frac{5}{2}$x-b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(Ⅲ)证明:对任意的正整数n,不等式2+$\frac{3}{4}$+$\frac{4}{9}$+…+$\frac{n+1}{{n}^{2}}$>ln(n+1)都成立.

分析 (Ⅰ)先求出函数f(x)的导数,解关于导函数的不等式,从而求出函数的单调区间;
(2)关于x的方程f(x)=$\frac{5}{2}$x-b在区间[0,2]上恰有两个不同的实数根,将问题转化为φ(x)=0,在区间[0,2]上恰有两个不同的实数根,对φ(x)对进行求导,从而求出b的范围;
(3)f(x)=x2+x-ln(x+1)的定义域为{x|x>-1},利用导数研究其单调性,可以推出ln(x+1)-x2-x≤0,令x=$\frac{1}{n}$,可以得到ln($\frac{n+1}{n}$)<$\frac{n+1}{{n}^{2}}$,利用此不等式进行放缩证明.

解答 解:(Ⅰ)函数f(x)的定义域为(-1,+∞),且f′(x)=2x+1-$\frac{1}{x+1}$=$\frac{x(2x+3)}{x+1}$,
令f′(x)>0,解得:x>0,令f′(x)<0,解得:-1<x<0,
∴函数f(x)在(-1,0)递减,在(0,+∞)递增;
(Ⅱ)f(x)=x2+x-ln(x+1)
由f(x)=$\frac{5}{2}$x-b,得ln(x+1)-x2+$\frac{3}{2}$x-b=0
令φ(x)=ln(x+1)-x2+$\frac{3}{2}$x-b,
则f(x)=$\frac{5}{2}$x-b在区间[0,2]上恰有两个不同的实数根等价于φ(x)=0在区间[0,2]上恰有两个不同的实数根.
φ′(x)=$\frac{1}{x+1}$-2x+$\frac{3}{2}$=$\frac{-(4x+5)(x-1)}{2(x+1)}$,
当x∈[0,1]时,φ′(x)>0,于是φ(x)在[0,1)上单调递增;
当x∈(1,2]时,φ′(x)<0,于是φ(x)在(1,2]上单调递减,
依题意有φ(0)=-b≤0,
φ(1)=ln(1+1)-1+$\frac{3}{2}$-b>0,
φ(2)=ln(1+2)-4+3-b≤0
解得,ln3-1≤b<ln2+$\frac{1}{2}$,
故实数b的取值范围为:[ln3-1,ln2+$\frac{1}{2}$);
(Ⅲ):f(x)=x2+x-ln(x+1)的定义域为{x|x>-1},
由(1)知f′(x)=2x+1-$\frac{1}{x+1}$=$\frac{x(2x+3)}{x+1}$,
令f′(x)=0得,x=0或x=-$\frac{3}{2}$(舍去),
∴当-1<x<0时,f′(x)<0,f(x)单调递减;
当x>0时,f′(x)>0,f(x)单调递增.
∴f(0)为f(x)在(-1,+∞)上的最小值.
∴f(x)≥f(0),故ln(x+1)-x2-x≤0(当且仅当x=0时,等号成立)
对任意正整数n,取x=$\frac{1}{n}$>0得,ln($\frac{1}{n}$+1)<$\frac{1}{n}$+$\frac{1}{{n}^{2}}$,
∴ln($\frac{n+1}{n}$)<$\frac{n+1}{{n}^{2}}$,
故2+$\frac{3}{4}$>ln2+ln$\frac{3}{2}$+ln$\frac{4}{3}$+…+ln$\frac{n+1}{n}$=ln(n+1).

点评 本题考查利用导数研究函数的极值及单调性,解题过程中用到了分类讨论的思想,分类讨论的思想也是高考的一个重要思想,要注意体会其在解题中的运用,第三问难度比较大,利用了前两问的结论进行证明,此题属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在平行四边形ABCD中,AB=4,AD=2,E,F分别是BC,CD的中点,且$\overrightarrow{DE}•\overrightarrow{BF}$=-15,则∠ABC=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{bn}满足b1=1,b2=5,bn+1=5bn-6bn-1,若数列{an}满足a1=1,an=bn($\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n-1}}$)(n≥2,n∈N*).
(1)求证:数列{bn+1-3bn}为等比数列,并求{bn}的通项公式;
(2)求证:(1+$\frac{1}{{a}_{1}}$)(1+$\frac{1}{{a}_{2}}$)(1+$\frac{1}{{a}_{3}}$)…(1+$\frac{1}{{a}_{n}}$)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=sinx+$\sqrt{3}$cosx,则下列命题正确的是①③④.(填上你认为正确的所有命题的序号)
①函数f(x)(x∈[0,$\frac{π}{2}$])的单调递增区间是[0,$\frac{π}{6}$];
②函数f(x)的图象关于点(-$\frac{π}{6}$,0)对称;
③函数f(x)的图象向左平移m(m>0)个单位长度后,所得的图象关于y轴对称,则m的最小值是$\frac{π}{6}$;
④若实数m使得方程f(x)=m在[0,2π]上恰好有三个实数解x1,x2,x3,则x1+x2+x3=$\frac{7π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)在定义域R内可导,f(1.9+x)=f(0.1-x)且(x-1)f′(x)<0,a=f(0),b=f($\frac{1}{2}$),c=f(3),则a,b,c的大小关系是(  )
A.a>b>cB.c>a>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.sin45°cos15°-cos135°sin165°=(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知以点P为圆心的圆经过点A(-1,1)和B(2,0),线段AB的垂直平分线交该圆于C、D两点,且|CD|=10
(Ⅰ)求直线CD的方程;
(Ⅱ)求圆P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}的前n项和为Sn=n(2n+1),则a10=39.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从某校高三年级抽查100名男同学,如果以身高达到170cm作为达标的标准,对抽取的100名男同学,得到以下列联表:
  身高达标 身高不达标 总计
 积极参加体育锻炼 40  75
 不
积极参加体育锻炼
 10  
 总计   100
(1)请完成上表;
(2)能否在犯错误的概率不超过0.15的前提下认为体育锻炼与身高达标有关系(K2的观察值精确到0.001)?
参考:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)^{2}}$
 P(k2≥k0 0.15 0.10
 k0 2.072 2.706

查看答案和解析>>

同步练习册答案