精英家教网 > 高中数学 > 题目详情

【题目】已知函数处有极值10.

(Ⅰ)求实数 的值;

(Ⅱ)设时,讨论函数在区间上的单调性.

【答案】(Ⅰ) ; (Ⅱ)见解析.

【解析】试题分析:(Ⅰ) 处有极值10,所以

(Ⅱ)求导得函数在R上的单调性,再讨论函数定义域在哪个区间即可.

试题解析:

(Ⅰ)定义域为

处有极值10.

.

解得:

时,

时,

在处处有极值10时, .

(Ⅱ)由(Ⅰ)可知,其单调性和极值分布情况如表:

1

+

0

-

0

+

极大

极小

①当,即时, 在区间上单调递减;

②当 ,即时, 在区间上的单调递减,在区间上单调递增;

③当时, 在区间上单调递增.

综上所述,当时函数在区间上的单调性为:

时,单调递减;

时, 上单调递减,在上单调递增;

时, 上单调递增.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为3的正方形,侧棱AA1长为4,且AA1与A1B1 , A1D1的夹角都是60°,则AC1的长等于(

A.10
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是(
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)请根据对数函数来指出函数的基本性质(结论不要求证明),并画出图像;

(2)拉普拉斯称赞对数是一项“使天文学家寿命倍増”的发明.对数可以将大数之间的乘除运算简化为加减运算,请证明:

(3)2017523日至27日,围棋世界冠军柯洁与DeepMind公司开发的程序“AlphaGo”进行三局人机对弈,以复杂的围棋来测试人工智能.围棋复杂度的上限约为而根据有关资料,可观测宇宙中普通物质的原子总数约为.甲、乙两个同学都估算了的近似值,甲认为是,乙认为是.现有两种定义:

①若实数满足则称接近

②若实数,且,满足,则称接近;请你任选取其中一种定义来判断哪个同学的近似值更接近并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)(x∈R)是偶函数,当x≥0时,f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)若不等式f(x)≥mx在1≤x≤2时都成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F(x)=f(x)+f(﹣x)在区间 是单调递减函数,将F(x)的图象按向量 平移后得到函数G(x)的图象,则G(x)的一个单调递增区间是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为3的正方体ABCD﹣A1B1C1D1中,A1E=CF=1.

(1)求两条异面直线AC1与D1E所成角的余弦值;
(2)求直线AC1与平面BED1F所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=3x
(1)求 f(x),g(x);
(2)若对于任意实数t∈[0,1],不等式f(2t)+ag(t)<0恒成立,求实数a的取值范围;
(3)若存在m∈[﹣2,﹣1],使得不等式af(m)+g(2m)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数f(x)=2sin(3x ),有下列命题:①其表达式可改写为y=2cos(3x );②y=f(x)的最小正周期为 ;③y=f(x)在区间( )上是增函数;④将函数y=2sin3x的图象上所有点向左平行移动 个单位长度就得到函数y=f(x)的图象.其中正确的命题的序号是(注:将你认为正确的命题序号都填上).

查看答案和解析>>

同步练习册答案