精英家教网 > 高中数学 > 题目详情

【题目】若函数h(x)=ax3+bx2+cx+d(a≠0)图象的对称中心为M(x0 , h(x0)),记函数h(x)的导函数为g(x),则有g′(x0)=0,设函数f(x)=x3﹣3x2+2,则f( )+f( )+…+f( )+f( )=

【答案】0
【解析】解:f′(x)=3x2﹣6x,f″(x)=6x﹣6,

令f″(x)=0得x=1,

∴f(x)的对称中心为(1,0),

= =…= =2,

∴f( )+f( )=f( )+f( )=…=f( )+f( )=0,

又f( )=f(1)=0

∴f( )+f( )+…+f( )+f( )=0.

故答案为:0.

求出f(x)的对称点,利用f(x)的对称性得出答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了缓解交通压力,某省在两个城市之间特修一条专用铁路,用一列火车作为公共交通车.已知每日来回趟数y是每次拖挂车厢节数x的一次函数,如果该列火车每次拖4节车厢,每日能来回16趟;如果每次拖6节车厢,则每日能来回10趟,火车每日每次拖挂车厢的节数是相同的,每节车厢满载时能载客110人.

(1)求出y关于x的函数;

(2)该火车满载时每次拖挂多少节车厢才能使每日营运人数最多?并求出每天最多的营运人数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)设a2﹣2ab+5b2=4对a,b∈R成立,求a+b的最大值及相应的a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,g(x)=lnx+ (a>0).
(1)求函数f(x)的极值;
(2)若x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是 把正确的序号都填上).

若fx=ax2+2a+bx+2其中x[2a-1,a+4]是偶函数,则实数b=2;

若函数在区间上递增,在区间上也递增,则函数必在上递增;

fx表示-2x+2与-2x2+4x+2中的较小者,则函数fx的最大值为1;

已知fx是定义在R上的不恒为零的函数,且对任意的x、yR都满足fx·y=x·fy+y·fx,则fx是奇函数Ks

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的首项a1=1,且(n+1)a +anan+1﹣na =0对n∈N*都成立.
(1)求{an}的通项公式;
(2)记bn=a2n1a2n+1 , 数列{bn}的前n项和为Tn , 证明:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cos(75°+α)=α是第三象限角,

(1)求sin(75°+α) 的值.

(2)求cos(α-15°) 的值.

(3)求sin(195°-α)+cos(105oα)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=lnx+ ,g(x)=ex (e是自然对数的底数,a∈R).
(Ⅰ)求证:|f(x)|≥﹣(x﹣1)2+
(Ⅱ)已知[x]表示不超过x的最大整数,如[1.9]=1,[﹣2.1]=﹣3,若对任意x1≥0,都存在x2>0,使得g(x1)≥[f(x2)]成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查我校学生的用电情况,学校后勤部门组织抽取了100间学生宿舍某月用电量调查,发现每间宿舍用电量都在50度到350度之间,其频率分布直方图如图所示.

(1)为降低能源损耗,节约用电,学校规定:每间宿舍每月用电量不超过200度时,按每度0.5元收取费用;超过200度,超过部分按每度1元收取费用.以t表示某宿舍的用电量(单位:度),以y表示该宿舍的用电费用(单位:元),求y与t的函数关系式?

(2)求图中月用电量在(200,250]度的宿舍有多少间?

查看答案和解析>>

同步练习册答案