精英家教网 > 高中数学 > 题目详情
20.已知sin($\frac{π}{6}$-α)+cos($\frac{π}{6}$-α)=$\frac{\sqrt{5}}{5}$,则cos($\frac{π}{6}$+2α)=-$\frac{4}{5}$.

分析 利用同角三角函数的基本关系、诱导公式,求得要求式子的值.

解答 解:∵sin($\frac{π}{6}$-α)+cos($\frac{π}{6}$-α)=$\frac{\sqrt{5}}{5}$,
∴1+sin($\frac{π}{3}$-2α)=$\frac{1}{5}$,∴sin($\frac{π}{3}$-2α)=-$\frac{4}{5}$,
∴cos($\frac{π}{6}$+2α)=sin($\frac{π}{3}$-2α)=-$\frac{4}{5}$,
故答案为:-$\frac{4}{5}$.

点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设x=$\frac{1+yi}{1+i}$,其中i是虚数单位,x、y是实数,则x+y=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示,正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=$\frac{1}{2}$,则下列结论中正确的有(2)(3).
(1)AC⊥AE;
(2)EF∥平面ABCD;
(3)三棱锥A-BEF的体积为定值:
(4)异面直线AE,BF所成的角为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在空间直角坐标系中,已知点A(1,0,2),B(2,1,0),C(0,a,1),若AB⊥AC,则实数a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等比数列{an}的前n项和为Sn,3a7=a42,a2=2a1,在等差数列{bn}中,b3=a4,b15=a5
(1)求证:Sn=2an-3
(2)求数列{$\frac{4}{(n+8){b}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线y=x-4与曲线y=$\sqrt{2x}$及x轴所围成图形的面积是(  )
A.$\frac{64}{3}$B.$\frac{40}{3}$C.$\frac{56}{3}$D.$\frac{38}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若A=60°,c=6,a=6,则此三角形有(  )
A.两解B.一解C.无解D.无穷多解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知O为坐标原点,双曲线${x^2}-\frac{y^2}{b^2}=1({b>0})$上有一点P,过点P作两条渐近线的平行线,与两条渐近线的交点分别为A,B,若平行四边形PAOB的面积为1,则双曲线的离心率为(  )
A.$\sqrt{17}$B.$\sqrt{15}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.欧阳修在《卖油翁》中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超,若铜钱直径2百米,中间有边长为1百米的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是(  )
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{2}{π}$

查看答案和解析>>

同步练习册答案