精英家教网 > 高中数学 > 题目详情

(本题满分14分)
已知函数f(x)=lnx+
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设mR,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma - (xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2 l+ 1n22,+…+ln2 n>∈N*).

(Ⅰ)函数的单调递减区间是.
(Ⅱ)的取值范围是.
(Ⅲ)见解析。

解析试题分析:(Ⅰ).
,得,因此函数的单调递增区间是.
,得,因此函数的单调递减区间是.…………(4分)
(Ⅱ)依题意,.
由(Ⅰ)知,上是增函数,
.
,即对于任意的恒成立.
解得.
所以,的取值范围是.   …………………………(8分)
(Ⅲ)由(Ⅰ)
.
.
.
又,


.
.
由柯西不等式,.
..     ……………………(14分)
考点:本题主要考查了导数的运算和导数在函数单调性中的应用, 柯西不等式的应用。
点评:较难题,利用导数求函数单调区间的方法,解题时注意函数的定义域,避免出错

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

其中,曲线在点处的切线垂直于轴.
(Ⅰ) 求的值;
(Ⅱ) 求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若A,B是函数f(x)图象上不同的两点,且直线AB的斜率恒大于1,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设点P在曲线上,从原点向A(2,4)移动,如果直线OP,曲线及直线x=2所围成的面积分别记为

(Ⅰ)当时,求点P的坐标;
(Ⅱ)当有最小值时,求点P的坐标和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)试用含的代数式表示
(Ⅱ)求的单调区间;
(Ⅲ)令,设函数处取得极值,记点,证明:线段与曲线存在异于的公共点;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知曲线y=
(1)求曲线在x=2处的切线方程;(2)求曲线过点(2,4)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)设函数.
⑴ 求的极值点;
⑵ 若关于的方程有3个不同实根,求实数a的取值范围.
⑶ 已知当恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数,其中.
(1)当时,求函数处的切线方程;
(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(3)已知,如果存在,使得函数处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,(),曲线在点处的切线垂直于轴.
(Ⅰ) 求的值;
(Ⅱ) 求函数的极值.

查看答案和解析>>

同步练习册答案