精英家教网 > 高中数学 > 题目详情
函数f(x)定义域为R,且对任意x、y∈R,f(x+y)=f(x)+f(y)恒成立.则下列选项中不恒成立的是(  )
分析:令x=y=0,得到A成立;令x=y=1,得到B成立;令x=y=
1
2
,得到C成立;令x=-y,得到D不成立.
解答:解:函数f(x)定义域为R,且对任意x、y∈R,f(x+y)=f(x)+f(y)恒成立,
令x=y=0,得f(0)=f(0)+f(0),∴f(0)=0,故A成立;
令x=y=1,得f(2)=f(1)+f(1)=2f(1),故B成立;
令x=y=
1
2
,得f(1)=f(
1
2
)+f(
1
2
)=2f(
1
2
),∴f(
1
2
)=
1
2
f(1)
,故C成立;
令x=-y,得f(0)=f(x)+f(-x)=0,∴f(-x)f(x)≤0,故D不成立.
故选D.
点评:本题考查抽象函数的性质和应用,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)定义域为R+,且满足条件f(x)=f(
1x
)•lgx+1,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义域为实数R,对任意的实数x、y,都有f(x+y)=f(x)+f(y),又当x>0时,f(x)<0且f(2)=-1.
(1)判断f(x)的奇偶性.
(2)判断f(x)在R上的单调性.
(3)求f(x)在[-6,6]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义域为(0,+∞),且满足2f(x)+f(
1
x
)=(2x-
1
x
)lnx

(Ⅰ)求f(x)解析式及最小值;
(Ⅱ)求证:?x∈(0,+∞),
x+1
ex
<1

(Ⅲ)设g(x)=
x+f(x)
xex
,h(x)=(x2+x)g′(x).求证::?x∈(0,+∞),h(x)<
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义域为R,ab∈R总有
f(a)-f(b)a-b
>0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是
m<1
m<1

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)定义域为R,且图象关于原点对称.当x>0时,f(x)=x3-2.则函数f(x+2)的所有零点之和为
-6
-6

查看答案和解析>>

同步练习册答案