精英家教网 > 高中数学 > 题目详情

对任意xR,函数f(x)满足f(x+1)= + ,an=[f(n)]2-f(n),数列{an}的前15项的和为,f(15)=    .

 

【答案】

【解析】因为f(x+1)=+,

所以f(x+1)-=0,

f(x+1).

两边平方得[f(x+1)-]2=f(x)-[f(x)]2,

[f(x+1)]2-f(x+1)+=f(x)-[f(x)]2,

[f(x+1)]2-f(x+1)+[f(x)]2-f(x)=-,

an+1+an=-,

即数列{an}的任意相邻两项之和为-,

所以S15=7×(-)+a15=-,a15=-.

所以a15=[f(15)]2-f(15)=-,

解得f(15)=f(15)=(舍去).

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

同时具有下列性质:“①对任意x∈R,f(x+π)=f(x)恒成立;②图象关于直线x=
π
3
对称”的函数可以是(  )
A、f(x)=sin(
x
2
+
π
6
B、f(x)=sin(2x-
π
6
C、f(x)=cos(2x-
π
6
D、f(x)=cos(2x+
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)<2x+4的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点的个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②对任意x∈R,都有0≤f(x)-x≤
1
2
(x-1)2.若存在,求出a,b,c的值;若不存在,请说明理由.
(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=
1
2
[f(x1)+f(x2)]成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义域为R的函数,有下列命题:
①对任意x∈R,f(x+1)=f(1-x)成立,那么函数f(x)的图象关于直线x=1对称;
②对任意x∈R,f(x)+f(1-x)=2成立,那么函数f(x)的图象关于点(1,1)对称;
③对任意x∈R,f(x)+f(x+1)=0成立,那么函数f(x)是周期为2的周期函数;
④对任意x∈R,f(1-x)+f(x-1)=0成立,那么函数f(x)是奇函数.
其中正确的命题的序号是
 
.(把你认为正确的命题的序号都填上)

查看答案和解析>>

同步练习册答案