设函数,.
(1)若曲线与在它们的交点处有相同的切线,求实数、的值;
(2)当时,若函数在区间内恰有两个零点,求实数的取值范围;
(3)当,时,求函数在区间上的最小值.
(1);(2);(3).
解析试题分析:(1)从条件“曲线与在它们的交点处有相同的切线”得到以及,从而列有关、的二元方程组,从而求出与的值;(2)将代入函数的解析式,利用导数分析函数在区间上的单调性,确定函数在区间上是单峰函数后,然后对函数的端点值与峰值进行限制,列不等式组解出的取值范围;(3)将,代入函数的解析式,并求出函数的单调区间,对函数的极值点是否在区间内进行分类讨论,结合函数的单调性确定函数在区间上的最小值.
科目:高中数学
来源:
题型:解答题
已知函数(为常数),其图象是曲线.
科目:高中数学
来源:
题型:解答题
已知函数.
科目:高中数学
来源:
题型:解答题
某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.
科目:高中数学
来源:
题型:解答题
已知函数,.
科目:高中数学
来源:
题型:解答题
已知函数,函数.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
试题解析:(1)因为,,所以,.
因为曲线与在它们的交点处有相同切线,
所以,且,
即,且,解得,;
(2)当时,,
所以,
令,解得,,
当变化时,、的变化情况如下表:
<
(1)当时,求函数的单调减区间;
(2)设函数的导函数为,若存在唯一的实数,使得与同时成立,求实数的取值范围;
(3)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为.问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.
(1)当时,求函数在上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又是的导函数.若正常数满足条件.证明:.
若,,请你分析能否采用函数模型y=作为生态环境改造投资方案.
(Ⅰ)若曲线在与处的切线相互平行,求的值及切线斜率;
(Ⅱ)若函数在区间上单调递减,求的取值范围;
(Ⅲ)设函数的图像C1与函数的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.
(I)试求f(x)的单调区间。
(II)若f(x)在区间上是单调递增函数,试求实数a的取值范围:
(III)设数列是公差为1.首项为l的等差数列,数列的前n项和为,求证:当时,.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号