精英家教网 > 高中数学 > 题目详情

【题目】已知过抛物线的焦点斜率为的直线交抛物线于 两点,且.

1求该抛物线的方程;

2过点任意作互相垂直的两条直线,分别交曲线于点.设线段的中点分别为求证:直线恒过一个定点.

【答案】12见解析

【解析】试题分析: 联立直线方程和抛物线方程,利用弦长公式列方程解出,即可得到抛物线的方程;

设直线的方程,联立抛物线方程得两根之和,计算点的坐标,同理可得点的坐标,运用直线点斜式给出直线方程,讨论斜率问题即可得出定点

解析:(1)抛物线的焦点直线的方程为

联立方程组消元得

解得.

,∴抛物线的方程为 .

2两点坐标分别为,则点的坐标为..

由题意可设直线的方程为.

.

因为直线与曲线两点,所以.

所以点的坐标为.

由题知,直线的斜率为,同理可得点的坐标为.

此时直线的斜率.

所以,直线的方程为,整理得.

于是,直线恒过定点

时,直线的方程为,也过点.

综上所述,直线恒过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 的部分图象如图所示,分别是图象的最低点和最高点,.

(1)求函数的解析式;

(2)将函数的图象向左平移个单位长度,再把所得图象上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且,其中.

(1)求的值;

(2)求函数的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x2|x2+2x-3<0},B=.

(1)在区间(-4,4)上任取一个实数x,求xAB的概率;

(2)设(a,b)为有序实数对,其中a是从集合A中任取的一个整数,b是从集合B中任取的一个整数,求b-aAB的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校团委组织了文明出行,爱我中华的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为.

1)求成绩在的频率,并补全此频率分布直方图;

2)求这次考试平均分的估计值;

3)若从成绩在的学生中任选两人,求他们的成绩在同一分组区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在路边安装路灯,路宽为,灯柱长为米,灯杆长为1米,且灯杆与灯柱成角,路灯采用圆锥形灯罩,其轴截面的顶角为,灯罩轴线与灯杆垂直.

⑴设灯罩轴线与路面的交点为,若米,求灯柱长;

⑵设米,若灯罩截面的两条母线所在直线一条恰好经过点,另一条与地面的交点为(如图2)

(图1) (图2)

(ⅰ)求的值;(ⅱ)求该路灯照在路面上的宽度的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点P是直线2x+y+10=0上的动点,直线PA、PB分别与圆x2+y2=4相切于A、B两点,则四边形PAOB(O为坐标原点)面积的最小值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是等腰梯形, ,在梯形中, ,且 平面.

(1)求证:面

(2)若二面角的大小为,求几何体的体积.

查看答案和解析>>

同步练习册答案