精英家教网 > 高中数学 > 题目详情

【题目】设全集U=R,已知集合A={x||x﹣a|≤1},B={x|(4﹣x)(x﹣1)≤0}.
(1)若a=4,求A∪B;
(2)若A∩B=A,求实数a的取值范围.

【答案】
(1)解:当a=4,A={x||x﹣a|≤1}

={x|﹣1+a≤x≤1+a}

={x|3≤x≤5},

B={x|(4﹣x)(x﹣1)≤0}

={x|x≥4或x≤1},

∴A∪B={x|x≥3或x≤1}


(2)解:A={x||x﹣a|≤1}

={x|﹣1+a≤x≤1+a},

B={x|(4﹣x)(x﹣1)≤0}

={x|x≥4或x≤1},

若A∩B=A,则AB,

∴﹣1+a≥4或1+a≤1,

∴a≥5或a≤0


【解析】(1)当a=4,A={x||x﹣a|≤1}={x|﹣1+a≤x≤1+a}={x|3≤x≤5},B={x|(4﹣x)(x﹣1)≤0}={x|x≥4或x≤1},由此能求出A∪B.(2)A={x||x﹣a|≤1}={x|﹣1+a≤x≤1+a},B={x|(4﹣x)(x﹣1)≤0}={x|x≥4或x≤1},若A∩B=A,则AB,由此能求出实数a的取值范围.
【考点精析】通过灵活运用集合的并集运算,掌握并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为(25x)万元(国家规定大货车的报废年限为10年).

1)大货车运输到第几年年底,该车运输累计收入超过总支出?

2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=
(1)证明函数f(x)是奇函数;
(2)证明函数f(x)在(﹣∞,+∞)内是增函数;
(3)求函数f(x)在[1,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点是直线上的动点,过作直线 ,线段的垂直平分线与交于点

(1)求点的轨迹的方程;

(2)若点是直线上两个不同的点,且的内切圆方程为,直线的斜率为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的参数方程为 (θ为参数),直线l经过点P(1,1),倾斜角
(1)写出直线l的参数方程;
(2)设l与圆C相交于两点A,B,求点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《太阳的后裔》是第一部中国与韩国同步播出的韩剧,爱奇艺视频网站在某大学随机调查了110名学生,得到如表列联表:由表中数据算得K2的观测值k≈7.8,因此得到的正确结论是(

总计

喜欢

40

20

60

不喜欢

20

30

50

总计

60

50

110

(K2≥k)

0.100

0.010

0.001

k

2.706

6.635

10.828

附表:K2=
A.有99%以上的把握认为“喜欢该电视剧与性别无关”
B.有99%以上的把握认为“喜欢该电视剧与性别有关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上且以3为周期的奇函数,当时, ,则函数在区间上的零点个数是( )

A. 3 B. 5 C. 7 D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}{n=123…2015},圆C1x2+y2﹣4x﹣4y=0,圆C2x2+y2﹣2anx﹣2a2006ny=0,若圆C2平分圆C1的周长,则{an}的所有项的和为( )

A. 2014 B. 2015 C. 4028 D. 4030

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足:f(﹣x)+f(x)=ex+ex , 则称f(x)为“e函数”.
(1)试判断f(x)=ex+x3是否为“e函数”,并说明理由;
(2)若f(x)为“e函数”且
(ⅰ)求证:f(x)的零点在 上;
(ⅱ)求证:对任意a>0,存在λ>0,使f(x)<0在(0,λa)上恒成立.

查看答案和解析>>

同步练习册答案