精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式是奇函数,其中a,b,c∈N,f(1)=2,f(2)<3.
(Ⅰ)求a,b,c的值;
(Ⅱ)判断并证明f(x)在(-∞,-1]上的单调性.

解:(Ⅰ)由f(x)=是奇函数得:f(-x)+f(x)=0,∴,∴
解得 c=0,即
又f(1)=2,∴
又 f(2)<3,可得,∴-1<a<2,
∵a∈N,∴a=0或1.
若a=0,则(舍去),∴a=b=1,c=0.
(Ⅱ)由(Ⅰ)知,,f(x)在(-∞,-1]上单调递增.
下用定义证明:设x1<x2≤-1,则:f(x1)-f(x2)===
因为x1<x2≤-1,x1-x2<0,
∴f(x1)-f(x2)<0,故f(x)在(-∞,-1]上单调递增.
分析:(Ⅰ)由f(-x)+f(x)=0,求得 c=0,即.再由f(1)=2、f(2)<3,a∈N,求得a,b,的值,从而得到a,b,c的值.
(Ⅱ)由(Ⅰ)知,,f(x)在(-∞,-1]上单调递增.设x1<x2≤-1,则由f(x1)-f(x2)=<0,从而得到 f(x)
在(-∞,-1]上单调递增.
点评:本题主要考查函数的奇偶性的应用,用函数的单调性的定义证明函数的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的奇函数,在(
1
2
,1)
上单调递增,且满足f(-x)=f(x-1),给出下列结论:①f(1)=0;②函数f(x)的周期是2;③函数f(x)在(-
1
2
,0)
上单调递增;④函数f(x+1)是奇函数.
其中正确的命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=e2x+|ex-a|,(a为实数,x∈R).
(1)求证:函数f(x)不是奇函数;
(2)若g(x)=xa在(0,+∞)单调减,求满足不等式f(x)>a2的x的取值范围;
(3)求函数f(x)的值域(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-2x+m2x+n
(m、n为常数,且m∈R+,n∈R).
(Ⅰ)当m=2,n=2时,证明函数f(x)不是奇函数;
(Ⅱ)若f(x)是奇函数,求出m、n的值,并判断此时函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-2x+a
2x+1+b
(a>0,b>0)

(1)当a=b=2时,证明:函数f(x)不是奇函数;
(2)设函数f(x)是奇函数,求a与b的值;
(3)在(2)条件下,判断并证明函数f(x)的单调性,并求不等式f(x)>-
1
6
的解集.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省无锡一中高二(下)期末数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=(m、n为常数,且m∈R+,n∈R).
(Ⅰ)当m=2,n=2时,证明函数f(x)不是奇函数;
(Ⅱ)若f(x)是奇函数,求出m、n的值,并判断此时函数f(x)的单调性.

查看答案和解析>>

同步练习册答案