精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)判断函数的奇偶性;
(2)当x≥0时,求函数f(x)的值域;
(3)当a>1时,判断并证明函数f(x)的单调性.

解:(1)∵定义域为R,且f(-x)=,∴f(x)是奇函数.
(2)f(x)=
当a>1时
∵x≥0
∴ax+1≥2,

即f(x)的值域为[0,1);
当0<a<1时
∵x≥0
∴1<ax+1≤2,

即f(x)的值域为(-1,0].
∴当a>1时,f(x)的值域为[0,1);当0<a<1时,f(x)的值域为(-1,0].
(3)当a>1时,函数f(x)是R上的增函数
设x1,x2∈R,且x1<x2,f(x1)-f(x2)=
∵分母大于零,且a<a
∴f(x1)<f(x2
∴f(x)是R上的增函数.
分析:(1)用定义法,先看定义域是否关于原点对称,再研究f(-x)与f(x)的关系.若相等,则为偶函数;若相反,则为奇函数;
(2)先将函数式变形f(x)=,再对a进行分类讨论:当a>1时;当0<a<1分别求出即f(x)的值域,最后综合即可;
(3)用定义法,先在定义域上任取两个变量,且界定大小,再作差变形看符号.当自变量变化与函数值变化一致时,为增函数;当自变量变化与函数值变化相反时,为减函数.
点评:本题考查的知识点是指数函数综合题,函数奇偶性的判断与函数单调性的判断及指数函数的值域和单调性,熟练掌握函数的各种性质及判断方法是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2015届陕西省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本小题12分)已知函数

(1)判断函数在区间上的单调性;

(2)求函数在区间是区间[2,6]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省江门市台山侨中高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)判断f(x)的奇偶性;(2)若,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:2015届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题

已知函数

(1)判断函数的奇偶性;(4分)

(2)若关于的方程有两解,求实数的取值范围;(6分)

(3)若,记,试求函数在区间上的最大值.(10分)

 

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省营口市高一上学期期末检测数学试卷 题型:解答题

(本小题满分12分)

 已知函数

(1)判断其奇偶性;

(2)指出该函数在区间(0,1)上的单调性并证明;

(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.

 

查看答案和解析>>

科目:高中数学 来源:2010年福建省四地六校高二下学期第二次联考数学(文科)试题 题型:解答题

(本小题满分12分)已知函数

(1)判断函数的奇偶性;(2)求证:方程至少有一根在区间

 

查看答案和解析>>

同步练习册答案