精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx-(1+a)x+
12
x2,a∈R

(1)当0<a<1时,求函数f(x)的单调区间;
(2)已知f(x)≥0对定义域内的任意x恒成立,求实数a的范围.
分析:(1)求出函数定义域,在定义域内解不等式f′(x)>0,f′(x)<0即可;
(2)f(x)≥0对定义域内的任意x恒成立,等价于f(x)min≥0,分a>0,a≤0两种情况求f(x)的最小值即可,用导数易求函数的最小值;
解答:解:(1)f(x)的定义域为(0,+∞),
f′(x)=
a
x
+x-(1+a)=
x2-(1+a)x+a
x
=
(x-1)(x-a)
x

当0<a<1时,f′(x)、f(x)的变化情况如下表:
x (0,a) a (a,1) 1 (1,+∝)
f'(x) + 0 - 0 +
f(x) 单调递增 极大值 单调递减 极小值 单调递增
所以函数f(x)的单调递增区间是(0,a),(1,+∞),单调递减区间是(a,1);
(2)由于f(1)=-
1
2
-a
,显然a>0时,f(1)<0,此时f(x)≥0对定义域内的任意x不是恒成立的;
当a≤0时,易得函数f(x)在区间(0,+∞)的极小值、也是最小值即是f(1)=-
1
2
-a
,此时只要f(1)≥0即可,解得a≤-
1
2

∴实数a的取值范围是(-∞,-
1
2
).
点评:本题考查利用导数研究函数的单调性、求函数在闭区间上的最值问题,考查恒成立问题,恒成立问题常常转化为求函数的最值处理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案