精英家教网 > 高中数学 > 题目详情
已知命题p:不等式|x-1|+|x+2|>m的解集为R;命题q:f(x)=log(5-2m)x为减函数.则p是q成立的(  )
A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件
分析:本题考查的知识点是充要条件的定义,根据根据“谁小谁充分,谁大谁必要”的原则,我们可以求出命题p成立时,m的取值范围,与命题q 成立时,m的取值范围,然后比较两个范围的包含关系,即可得到结论.
解答:解:命题p:不等式|x-1|+|x+2|>m的解集为R
则m∈(-∞,3)
命题q:f(x)=log(5-2m)x为减函数.
则m∈(-∞,2)∪(2,
5
2

∵(-∞,2)∪(2,
5
2
)?(-∞,3)
根据“谁小谁充分,谁大谁必要”的原则,
p是q成立的必要不充分条件
故选B
点评:判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

21、已知命题p:不等式|x|+|x+1|>m的解集为R,命题q:函数f(x)=x2-2mx+1在(2,+∞)上是增函数.若p∨q为真命题,p∧q为假命题,则实数m的取值范围是
{m|1≤m≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式|x-1|>m-1的解集为R,命题q:f(x)=(5-2m)x是(-∞,+∞)上的增函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:不等式ex>m的解集为R,命题q:f(x)=
2-m
x
在区间(0,+∞)上是减函数,若命题“p或q”为真,命题“p且q”为假,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式|x|+|x-1|>a的解集为R,命题q:f(x)=-(5-2a)x是减函数,若p,q中有且仅有一个为真命题,则实数a的取值范围是
[1,2)
[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式-2x+m>1,x∈[-1,0]恒成立;命题q:函数y=log2[4x2+4(m-2)x+1]的定义域为(-∞,+∞),若“p∨q”为真,“p∧q”为假,求m的取值范围.

查看答案和解析>>

同步练习册答案