精英家教网 > 高中数学 > 题目详情
已知双曲线C的中心在原点,抛物线y2=2x的焦点是双曲线C的一个焦点,且双曲线过点(1,),

(1)求双曲线的方程;

(2)设直线l:y=kx+1与双曲线C交于A、B两点,试问:

①k为何值时;

②是否存在实数k,使A、B两点关于直线y=mx对称(m为常数),若存在,求出k的值;若不存在,请说明理由.

解析:(1)由题意设双曲线方程为=1,

把(1,)代入得=1.                                                (*)

又y2=2x的焦点是(,0),故双曲线的c2=a2+b2=与(*)联立,消去b2可得4a2-21a2+5=0,(4a2-1)(a2-5)=0.

∴a2=,a2=5(不合题意舍去)

于是b2=1,∴双曲线方程为4x2-y2=1;

(2)由消去y得

(4-k2)x2-2kx-2=0.                                                          (*)

当Δ>0 即-2<k<2(k≠±2)时,

l与C有两个交点A、B,

①设A(x1,y1),B(x2,y2),

,故·=0即x1x2+y1y2=0,

由(*)知x1+x2=,x1x2=

代入可得+k2·+k·+1=0,

化简得k2=2,∴k=±,检验符合条件,故当k=±时,.

②若存在实数k满足条件,则必须

由(ⅱ)(ⅲ)得m(x1+x2)=k(x1+x2)+2,

把x1+x2=代入(ⅰ)得mk=4这与(ⅰ)的km=-1矛盾,故不存在实数k满足条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C的中心在坐标原点O,对称轴为坐标轴,点(-2,0)是它的一个焦点,并且离心率为
2
3
3

(Ⅰ)求双曲线C的方程;
(Ⅱ)已知点M(0,1),设P(x0,y0)是双曲线C上的点,Q是点P关于原点的对称点,求
MP
MQ
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的中心在坐标原点,渐近线方程是3x±2y=0,左焦点的坐标为(-
13
,0)
,A、B为双曲线C上的两个动点,满足
OA
OB
=0.
(Ⅰ)求双曲线C的方程;
(Ⅱ)求
1
|
OA
|
2
+
1
|
OB
|
2
的值;
(Ⅲ)动点P在线段AB上,满足
OP
AB
=0,求证:点P在定圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的中心在原点,焦点在坐标轴上,P(1,-2)是C上的点,且y=
2
x
是C的一条渐近线,则C的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求
DA
DB
的值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(M,N都不同于点E),且EM⊥EN,求证:直线MN与x轴的交点是一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理) 在平面直角坐标系中,已知双曲线C的中心在原点,它的一个焦点坐标为(
5
,0)
e1
=(2,1)
e2
=(2,-1)
分别是两条渐近线的方向向量.任取双曲线C上的点P,其中
op
=m
e1
+n
e2
(m,n∈R),则m,n满足的一个等式是
4mn=1
4mn=1

查看答案和解析>>

同步练习册答案