精英家教网 > 高中数学 > 题目详情

【题目】已知正项数列{an}的首项a1=1,且(n+1)a +anan+1﹣na =0对n∈N*都成立.
(1)求{an}的通项公式;
(2)记bn=a2n1a2n+1 , 数列{bn}的前n项和为Tn , 证明:Tn

【答案】
(1)解:(n+1)a +anan+1﹣na =0对n∈N*都成立.

∴[(n+1)an+1﹣nan](an+1+an)=0,∵an+1+an>0,

∴(n+1)an+1﹣nan=0,即 =

∴an= = 1=


(2)解:证明:bn=a2n1a2n+1= =

数列{bn}的前n项和为Tn= +…+

=

即Tn


【解析】(1)(n+1)a +anan+1﹣na =0对n∈N*都成立.分解因式可得:[(n+1)an+1﹣nan](an+1+an)=0,由an+1+an>0,可得(n+1)an+1﹣nan=0,即 = .利用“累乘求积”方法即可得出.(2)bn=a2n1a2n+1= = .利用裂项求和方法、数列的单调性即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,( )是偶函数.

(1)求的值;

(2)设函数,其中.若函数的图象有且只有一个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)ax (a1)

(1)判断函数f(x)(1,+∞)上的单调性,并证明你的判断;

(2)a3,求方程f(x)0的正根(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+2x﹣2﹣a(a0),

(1)若a=﹣1,求函数的零点;

(2)若函数在区间(0,1]上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数h(x)=ax3+bx2+cx+d(a≠0)图象的对称中心为M(x0 , h(x0)),记函数h(x)的导函数为g(x),则有g′(x0)=0,设函数f(x)=x3﹣3x2+2,则f( )+f( )+…+f( )+f( )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的定义域;

(2)若函数的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=4,直线l:y=x,则圆C上任取一点A到直线l的距离小于1的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ ax2﹣2x存在单调递减区间,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某购物网站在2017年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后〕满300元时可减免100元”.小淘在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案